Problemas propuestos con solución

Integración múltiple: integrales dobles

ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es

Índice

1.	Integrales iteradas	1
2.	Teorema de Fubini	2
3.	Cambio de variables	3
4.	Cambio de variables: coordenadas polares	4
5.	Aplicaciones: cálculo de áreas	4
6.	Aplicaciones: cálculo de volúmenes	5

1. Integrales iteradas

1. Evaluar las siguientes integrales iteradas:

(a)
$$\int_{-1}^{1} \int_{0}^{1} (x^{4}y + y^{2}) dy dx;$$
 (b) $\int_{0}^{1} \int_{0}^{1} xye^{x+y} dy dx;$ (c) $\int_{-1}^{1} \int_{1}^{2} (-x \ln y) dy dx;$ (d) $\int_{0}^{1} \int_{0}^{1} \ln \left[(x+1)(y+1) \right] dx dy.$ Solución: (a) $\frac{13}{15}$; (b) 1; (c) 0; (d) $4 \ln 2 - 2$.

2. Evaluar las siguientes integrales iteradas y trazar las regiones determinadas por los límites:

(a)
$$\int_0^1 \int_0^{x^2} dy \, dx$$
; (b) $\int_0^1 \int_1^{e^x} (x+y) \, dy \, dx$; (c) $\int_{-3}^2 \int_0^{y^2} (x^2+y) \, dx \, dy$; (d) $\int_0^{\pi/2} \int_0^{\cos x} y \sin x \, dy \, dx$; (e) $\int_{-1}^1 \int_{-2|x|}^{|x|} e^{x+y} \, dy \, dx$; (f) $\int_{-1}^0 \int_0^{2\sqrt{1-x^2}} x \, dy \, dx$.
Solución: (a) $\frac{1}{3}$; (b) $\frac{e^2-1}{4}$; (c) $\frac{7895}{84}$; (d) $\frac{1}{6}$; (e) $\frac{e^2}{2} + \frac{1}{e} + \frac{1}{3e^3} - \frac{5}{6}$; (f) $-\frac{2}{3}$.

3. Cambiar el orden de integración en cada una de las integrales siguientes:

(a)
$$\int_0^1 \int_{x^4}^{x^2} f(x,y) \, dy \, dx;$$
 (b) $\int_0^1 \int_{-y}^y f(x,y) \, dx \, dy;$ (c) $\int_1^4 \int_x^{2x} f(x,y) \, dy \, dx.$ Solución:
(a) $\int_0^1 \int_{\sqrt{y}}^{\sqrt{y}} f(x,y) \, dx \, dy;$ (b) $\int_{-1}^0 \int_{-x}^1 f(x,y) \, dy \, dx + \int_0^1 \int_x^1 f(x,y) \, dy \, dx;$ (c) $\int_1^2 \int_1^y f(x,y) \, dx \, dy + \int_2^4 \int_{y/2}^y f(x,y) \, dx \, dy + \int_4^8 \int_{y/2}^4 f(x,y) \, dx \, dy.$

4. Cambiar el orden de integración en las integrales del problema 2 y evaluarlas.

Solución:

(a)
$$\int_{0}^{1} \int_{\sqrt{y}}^{1} dx \, dy = \frac{1}{3}$$
; (b) $\int_{1}^{e} \int_{\ln y}^{1} (x+y) \, dx \, dy = e^{2} - \frac{1}{4}$;
(c) $\int_{0}^{4} \int_{\sqrt{x}}^{2} (x^{2}+y) \, dy \, dx + \int_{0}^{4} \int_{-3}^{-\sqrt{x}} (x^{2}+y) \, dy \, dx + \int_{4}^{9} \int_{-3}^{-\sqrt{x}} (x^{2}+y) \, dy \, dx = \frac{7895}{84}$;
(d) $\int_{0}^{1} \int_{0}^{\arccos y} y \operatorname{sen} x \, dx \, dy = \frac{1}{6}$;
(e) $\int_{-2}^{0} \int_{-1}^{y/2} e^{x+y} \, dx \, dy + \int_{-2}^{0} \int_{-y/2}^{1} e^{x+y} \, dx \, dy + \int_{0}^{1} \int_{-1}^{-y} e^{x+y} \, dx \, dy + \int_{0}^{1} \int_{y}^{1} e^{x+y} \, dx \, dy = \frac{e^{2}}{2} + \frac{1}{e} + \frac{1}{3e^{3}} - \frac{5}{6}$;
(f) $\int_{0}^{2} \int_{-\frac{1}{2}\sqrt{4-y^{2}}}^{0} x \, dx \, dy = -\frac{2}{3}$.

2/5 I. MARRERO

5. Cambiar el orden de integración, esbozar las regiones correspondientes y evaluar las integrales de las

(a)
$$\int_{0}^{1} \int_{x}^{1} xy \, dy \, dx$$
;

(b)
$$\int_0^{\pi/2} \int_0^{\cos \theta} \cos \theta \, dr \, d\theta;$$

(c)
$$\int_0^4 \int_{y/2}^2 e^{x^2} dx dy$$
;

(c)
$$\int_0^4 \int_{y/2}^2 e^{x^2} dx dy$$
; (d) $\int_{-3}^1 \int_{-\sqrt{9-y^2}}^{\sqrt{9-y^2}} x^2 dx dy$.

Solución: (a)
$$\frac{1}{8}$$
; (b) $\frac{\pi}{4}$; (c) $e^4 - 1$; (d) $\frac{43\sqrt{2}}{6} + \frac{81}{4} \arcsin \frac{1}{3} + \frac{81\pi}{8}$.

2. Teorema de Fubini

6. Evaluar las siguientes integrales en los recintos que se indican:

(a)
$$\iint_R (x^2 + y^2) dx dy$$
, $R = [0, 1] \times [0, 1]$;

(b)
$$\iint_R \operatorname{sen}(x+y) \, dx \, dy$$
, $R = [0,1] \times [0,1]$;

(c)
$$\iint_R \left(-xe^x \sin \frac{\pi y}{2}\right) dx dy$$
, $R = [0,2] \times [-1,0]$; (d) $\iint_R |y| \cos \frac{\pi x}{4} dx dy$, $R = [0,2] \times [-1,0]$.

(d)
$$\iint_R |y| \cos \frac{\pi x}{4} dx dy$$
, $R = [0,2] \times [-1,0]$.

Solución: (a)
$$\frac{2}{3}$$
; (b) $2 \sin 1 - \sin 2$; (c) $\frac{2}{\pi} (1 + e^2)$; (d) $\frac{2}{\pi}$.

7. Sea $I = [0,2] \times [0,3]$. Calcular $\iint_I (x^2 + 4y) \, dx \, dy$.

Solución: 44.

- 8. Sea *D* el recinto plano limitado por las rectas y = 0, y = 1, x = -1, x = y. Hallar $\iint_D (xy y^3) dx dy$. Solución: $-\frac{23}{40}$
- 9. Hallar $\iint_D xy \, dx \, dy$, siendo D la región del primer cuadrante encerrada por las parábolas $y^2 = x$, $y = x^2$. Solución: $\frac{1}{12}$.
- 10. Sea D la región acotada por las partes positivas de los ejes OX, OY y la recta 3x + 4y = 10. Calcular $\iint_D (x^2 + y^2) \, dx \, dy.$

Solución: $\frac{15625}{1296}$

11. Sea D la región dada como el conjunto de los puntos (x,y) del plano donde $1 \le x^2 + y^2 \le 2$ e $y \ge 0$. Evaluar $\iint_D (1+xy) dx dy$.

Solución: $\frac{\pi}{2}$.

12. Calcular $\iint_D (x^2 - y) dx dy$, siendo D la región comprendida entre las gráficas de las parábolas $y = -x^2$, $y = x^2$, y las rectas x = -1, x = 1.

Solución:
$$\frac{4}{5}$$
.

13. Hallar $\iint_D xy \, dx \, dy$, siendo D el conjunto de los puntos $(x,y) \in \mathbb{R}^2$ que satisfacen $0 \le y \le x + 2$, $4x^2 + 9y^2 \le 36$.

Solución:
$$\frac{23}{6}$$
.

3. Cambio de variables

- 14. Sea D el paralelogramo limitado por y=-x, y=-x+1, y=2x, y=2x-3. Calcular $\iint_D (x+y)^2 dx dy$. Solución: $\frac{1}{3}$.
- 15. Sea D la región del primer cuadrante delimitada por las curvas $x^2 + y^2 = 4$, $x^2 + y^2 = 9$, $x^2 y^2 = 4$, $x^2 y^2 = 1$. Hallar $\iint_D xy \, dx \, dy$. Solución: $\frac{15}{8}$.
- 16. Sea D la región $0 \le y \le x$, $0 \le x \le 1$. Evaluar $\iint_D (x+y) \, dx \, dy$ haciendo el cambio x = u+v, y = u-v. Verificar la respuesta calculando directamente la integral doble mediante integrales iteradas.

Solución:
$$\frac{1}{2}$$
.

17. Sea T(u,v) = (x(u,v),y(u,v)) = (4u,2u+3v). Sea $D^* = [0,1] \times [1,2]$. Hallar $D = T(D^*)$ y calcular:

(a)
$$\iint_D xy \, dx \, dy$$
, (b) $\iint_D (x-y) \, dx \, dy$,

haciendo un cambio para evaluarlas como integrales sobre D^* .

Solución:
$$D = \left\{ (x, y) \in \mathbb{R}^2 : 0 \le x \le 4, \frac{x}{2} + 3 \le y \le \frac{x}{2} + 6 \right\};$$
 (a) 140; (b) -42.

18. Efectuando un cambio de variables apropiado, calcular $\iint_R x^2 y^2 dx dy$, siendo R la porción del primer cuadrante acotada por las hipérbolas xy = 1, xy = 2 y las rectas y = x, y = 4x.

Solución:
$$\frac{7}{3} \ln 2$$
.

4/5 I. Marrero

4. Cambio de variables: coordenadas polares

19. Sea D el círculo unidad. Evaluar $\iint_D e^{x^2+y^2} dx dy$ haciendo un cambio de variables a coordenadas polares.

Solución: $\pi(e-1)$.

20. Mediante un cambio de variable a coordenadas polares, calcúlense las siguientes integrales:

(a)
$$\iint_D (1+x^2+y^2)^{-3/2} dx dy$$
, donde *D* es el triángulo de vértices $(0,0)$, $(1,0)$, $(1,1)$;

(b)
$$\iint_D (x^3 + y^3) dx dy$$
, siendo $D = \{(x, y) \in \mathbb{R}^2 : x \ge 0, y \ge 0, x^2 + y^2 \le 1, x^2 + y^2 - 2x \ge 0\}$.

Solución: (a)
$$\frac{\pi}{12}$$
; (b) $\frac{29\sqrt{3}}{64} + \frac{203}{960} - \frac{7\pi}{24}$.

21. Calcular $\iint_D (x^2 + y^2)^{3/2} dx dy$, siendo D el disco $x^2 + y^2 \le 4$.

Solución: $\frac{64\pi}{5}$.

- 22. Hallar $\iint_D \left(1 \frac{x^2}{a^2} \frac{y^2}{b^2}\right) dx dy$, donde D es el recinto acotado por la elipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a, b > 0). Solución: $\frac{\pi ab}{2}$.
- 23. Calcular $\iint_D (x^2 + y^2) dx dy$, donde D está determinado por las condiciones: $x^2 + y^2 x < 0$, $x^2 + y^2 y > 0$, y > 0.

Solución: $\frac{1}{8}$.

24. Siendo D el semicírculo limitado por el eje OX y la semicircunferencia $x^2 + y^2 - 2Rx = 0$, y > 0, calcular la integral doble, extendida a D, de la función $f(x,y) = x^2 - y^2$.

Solución: $\frac{\pi R^4}{2}$.

25. Calcular $\iint_D \arcsin(x^2 + y^2) \, dx \, dy$, donde el recinto de integración D es el dominio plano limitado por la curva de ecuación polar $\rho = \sqrt{\sin \theta} \; (0 \le \theta \le \pi/2)$ y la perpendicular al eje polar trazada por el polo. Solución: $1 - \frac{\pi}{4}$.

5. Aplicaciones: cálculo de áreas

26. Usar integrales dobles para calcular el área de un círculo de radio r.

Solución: πr^2 .

27. Hallar el área del recinto encerrado por una elipse de semiejes a y b.

Solución: πab.

- 28. Hallar el área comprendida entre las circunferencias $x^2 + y^2 = 2x$, $x^2 + y^2 = 4x$ y las rectas y = x, y = 0. Solución: $\frac{3}{2} \left(\frac{\pi}{2} + 1 \right)$.
- 29. Se considera la lemniscata de ecuación $\rho^2 = 2a^2\cos 2\theta \ (a>0)$, y el círculo de centro el origen y radio a. Calcular mediante una integral doble el área de la porción de plano limitada por un bucle de la lemniscata que es exterior a dicho círculo.

Solución:
$$\frac{a^2}{2} \left(\sqrt{3} - \frac{\pi}{3} \right)$$
.

6. Aplicaciones: cálculo de volúmenes

30. Una pirámide está limitada por los tres planos coordenados y el plano x + 2y + 3z = 6. Representar el sólido y calcular su volumen por integración doble.

Solución: 6.

31. Usar integrales dobles para calcular el volumen de una esfera de radio r.

Solución:
$$\frac{4\pi r^3}{3}$$
.

32. Calcular el volumen del sólido acotado por los planos OXY, OYZ, OXZ, x=1, y=1 y la superficie $z=x^2+y^2$.

Solución:
$$\frac{2}{3}$$
.

33. Calcular el volumen del sólido acotado por la superficie $z = x^2 + y$, el rectángulo $R = [0, 1] \times [1, 2]$ y los lados verticales de R.

Solución:
$$\frac{11}{6}$$
.

34. Calcular el volumen del cuerpo limitado por el paraboloide hiperbólico z = xy, el cilindro $y = \sqrt{2x}$ y los planos x + y = 4, y = 0, z = 0.

Solución: 6.