

FARMACOLOGÍA DE LOS MEDIADORES CELULARES

EICOSANOIDES: Prostaglandinas, Tromboxanos y Leucotrienos.

Concepto. Biosíntesis y degradación.

Importancia y usos.

Factor activador de las plaquetas.

EICOSANOIDES

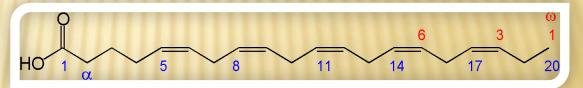
- ·Procedencia: á.g. insaturados de 20 C.
- Tipos: PGs, TX, LT, Epoxilinas, Lipoxinas,

HETE

AUTACOIDES

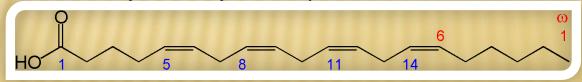
- Mediadores de procesos fisiológicos y patológicos.
- •Tipos: Histamina, Serotonina, Purinas, Óxido

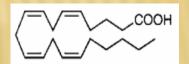
nítrico, Eicosanoides, Factor activador de plaquetas.

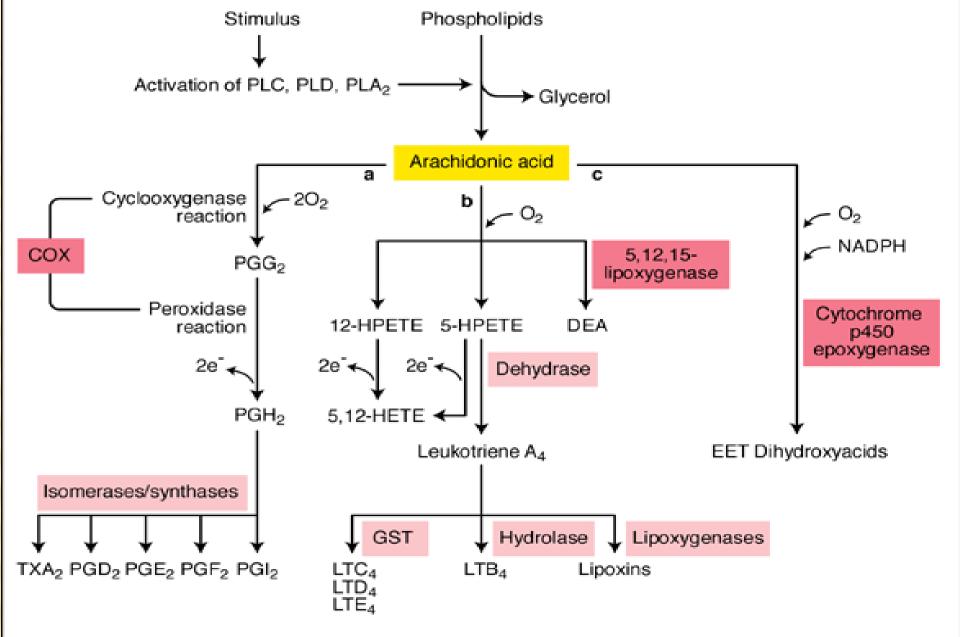

Procedencia de los eicosanoides

- Ácidos grasos poliinsaturados
- 3 insaturaciones: á. 8,11,14-eicosa-trienoico (á. dihomo-Y-

linolénico) \Rightarrow PGE₁, TXA₁, LTA₃


• 5 insat: á. 5,8,11,14,17-eicosa-pentaenoico (EPA – ω3)

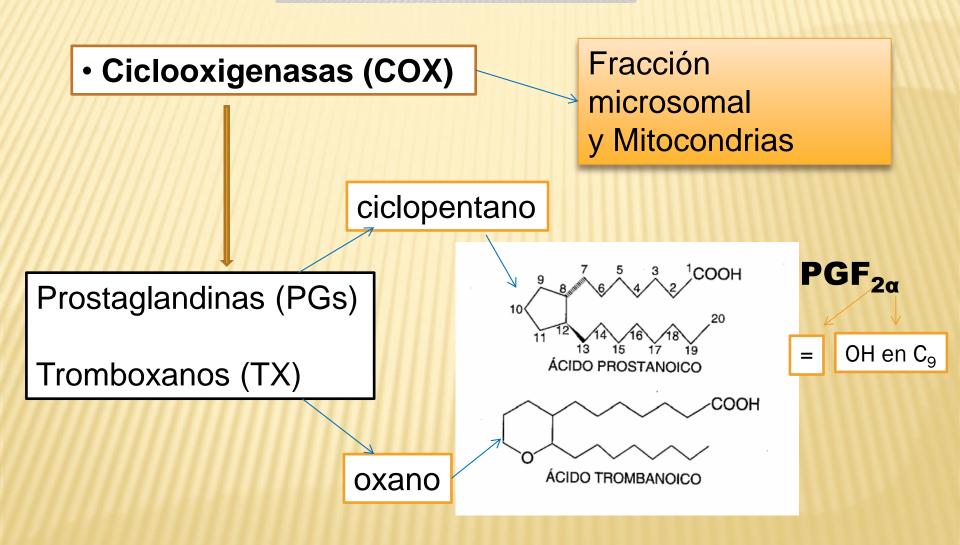

$$\Rightarrow PGE_3$$
, TXA₃, LTA₅.

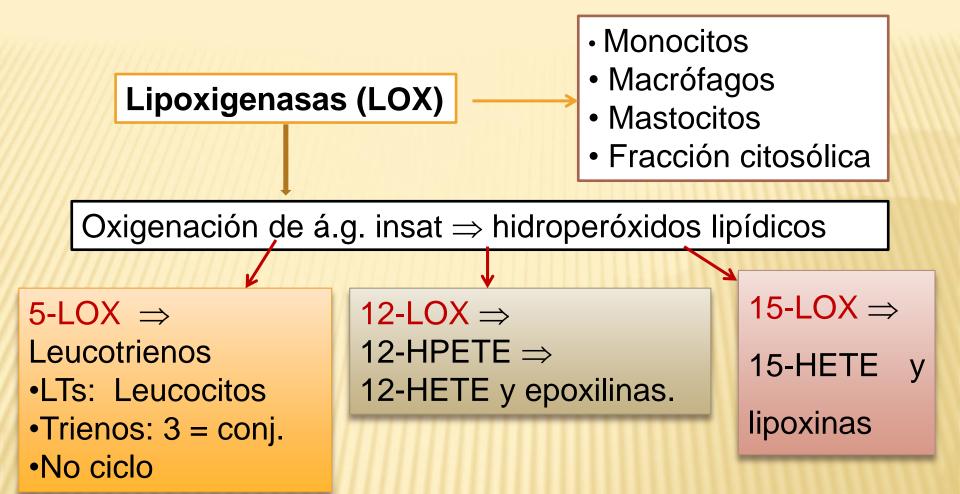


· 4 insat: 5,8,11,14-eicosa-tetraenoico (á. araquidónico):

$$\Rightarrow$$
 PGE₂, TXA₂, LTA₄

The three major pathways involved in arachidonic acid metabolism


Expert Reviews in Molecular Medicine @ 2003 Cambridge University Press


Ácido araquidónico (AA)

- Más abundante en humanos
- Carnes rojas o blancas.
- Tras absorción, se fija a fosfolípidos tisulares.
- Se libera de los fosfolípidos por FOSFOLIPASA A2 (FLA2)

FLA₂: Células eucariotas, membranas celulares, mitocondrias y aparato de Golgi, leucocitos PMN, plaquetas, bacterias y protozoos.

Metabolismo del AA

Metabolismo del AA

Ácido graso reductasas

Interconversión de AG poliinsaturados (citocromo P450)

á. epoxi-eicosa-trienoicos (EET)

á. 20-hidroxi-eicosa-tetraenoico (20-HETE)

Controlan reactividad vascular y transporte iónico renal

- vasoconstrictores
- ↓ excreción de Na y H₂O

Vía de los isoprostanos

- · Isómeros de PGs (oxid. Fosfolipidos)
- Radicales libres pero no enzimas
- Papel desconocido

Isoformas de la COX

COX-1: Isoleucina

- Constitutiva ⇒ vasos sanguíneos, mucosa gástrica, intestino, plaquetas, riñones.
- Poca actividad por estimulación hormonal
- Interviene en Homeostasia: Citoprotección gástrica, regulación de tono vascular, tono bronquial, contracción uterina y agregación plaquetaria.
- Inhibición ⇒ efectos no deseados (↓ síntesis de PGs y Txs) (AINEs).

COX-2: Valina

- Inducida ⇒ fibroblastos, monocitos, células endoteliales y folículos ováricos (estímulo inflamatorio o inmunológico).
- Estímulos ⇒ interleucinas, interferón, TNF, mediadores de lesión celular.
- Interviene en proceso patológicos: dolor, inflamación, artrosis, ovulación, ...
- Inhibición ⇒ actividad analgésica, antipirética y antiinflamatoria (inhibidores selectivos de COX-2).
- Constitutiva: cerebro, riñón, endotelio (PGI2 y prob. C.V de Coxibs).

COX-3: Isoforma de COX-2

- Origen cerebral
- Inhibida por paracetamol, fenacetina, antipirina y dipirona.

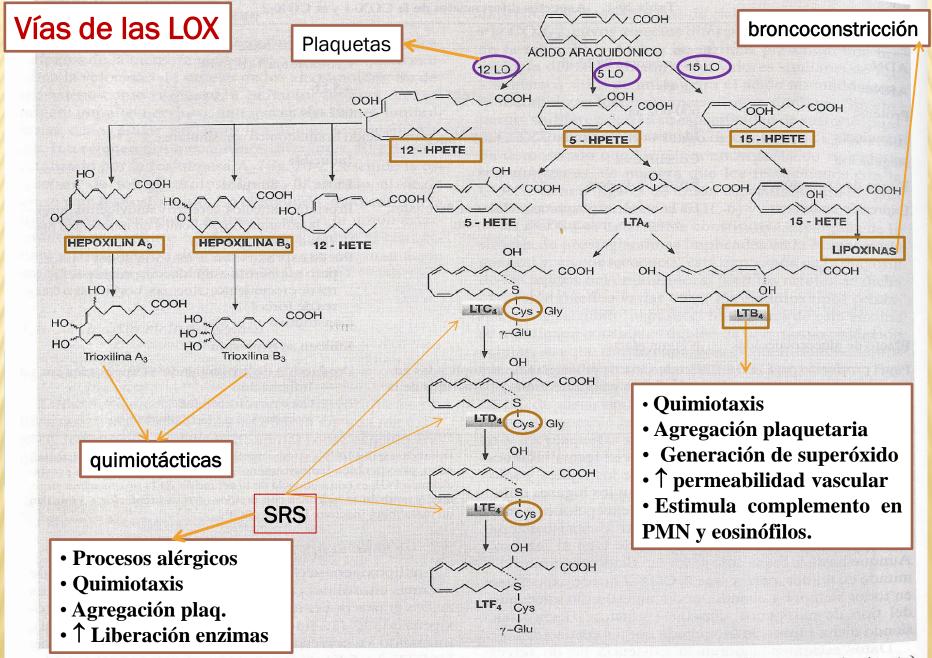


Fig. 20-3. Biosíntesis de los derivados del ácido araquidónico producidos por la acción de las 5, 12 y 15-lipoxigenasas (v. el texto).

Receptores de eicosanoides

- Receptores específicos de memb. de células musculares lisas: vasos sanguíneos, tracto digestivo, bronquios, útero.
 - Receptores acoplados a prot. G
 - Su estimulación activa:
 - ✓ Adenil-ciclasa ⇒ ↑ AMPc
 - ✓ Fosfolipasa $C \Rightarrow \uparrow Ca^{++}$, DAG, IP₃.

Receptores de PGs

- $PGE_2 \Rightarrow EP (EP_1, EP_2, EP_3, EP_4, EP_5)$
- $PGD_2 \Rightarrow DP (DP_1, DP_2)$
- $PGF_{2\alpha} \Rightarrow FP$
- PGI₂ ⇒ IP (endotelio vascular)
- $\mathsf{TXA}_2 \Rightarrow \mathsf{TP}$ (plaquetas)

Receptores de leucotrienos

- LTB₄ \Rightarrow BLT (BLT₁ y BLT₂)
- LTC₄, LTD₄, LTE₄ ⇒ Cys LT
- Cys-LT₁ (Cisteínicos LT1)
 - o Leucocitos, PULMÓN, bronquios, macrófagos alveolares, bazo.
 - o Broncoconstricción, edema, hipersecreción mucosa y quimiotaxis
 - Bloqueados por los "Lukast"
- Cys-LT₂ (Cisteínicos LT2)
 - Endotelio, corazón, placenta y bazo (no pulmón).

Tabla 30-2. Características de receptores y funciones biológicas de prostaglandinas, tromboxano y leucotrienos

AGONISTA	RECEPTOR	Proteina G	SEGUNDO MENSAJERO	DISTRIBUCIÓN DE RECEPTORES	Principales Funciones biológicas
PGD ₂	DP	G _s	↑АМРС	Músculo liso vascular, plaquetas, fleon, pulmón, útero, cerebro	Vasodilatación Inhibición de la agregación plaquetaria Regulación del sueño Relajación del músculo liso GI Relajación del músculo liso uterino
PGE ₂	EP ₁	G_{q}	↑ IP ₃ -DAG, ↑ Ca ²⁺	Ampliamente distribuido en diferentes tejidos: GI, riñón, pulmó	Contracción del músculo liso bronquial Contracción del músculo liso Gl Inhibición de la reabsorción de Na+ y H₂O y consiguiente natriuresis
	EP ₂	G _s	↑ AMPc	Músculo liso vascular, pulmón, placenta, útero, GI, timo, bazo	Vasodilatación Broncodilatación Relajación del músculo liso GI Inhibición de la función de los granulocitos Inhibición de la liberación de mediadores lipídicos producidos por mastocitos
	EP ₃	$G_{\mathfrak{s}}$ $G_{\mathfrak{l}}$ $G_{\mathfrak{q}}$	↑ AMPc ↓ AMPc ↑ IP ₃ -DAG, ↑ Ca ²⁺	Ampliamente distribuidos en distintos tipos celulares	Contracción del músculo liso GI Citoprotección: inhibe la secreción ácida y aumenta la secreción mucosa del estómago Inhibición de la liberación de neurotransmisores del sistema nervioso autónomo Inhibición de la lipolisis
	EP ₄	G _s	↑ AMPc	íleon, timo, bazo, pulmón, estómago, útero	Vasodilatación L Inhibición funcional de linfocitos T
PGF _{2x}	FP	G_{q}	↑ IP ₃ -DAG, ↑ Ca ²⁺	Ovarios, intestino, próstata, bazo, testículo, timo	Contracción del músculo liso Luteólisis Reducción de la presión intraocular
PGI ₂	IP	G _s	↑АМРС	Aorta y vasculatura general, pulmón, corazón, riñón	Vasodilatación Inhibición de la agregación plaquetaria Aumenta la sensibilidad de los nervios sensoriales-hiperalgesia Aumenta la liberación de renina y produce natriuresis Aumenta el flujo sanguíneo renal
TXA ₂	TP	Gq	↑ IP ₃ -DAG, ↑ Ca ²⁻	Plaquetas	Agregación plaquetaria Vasoconstricción
LTB ₄	BLT	G_q	↑ IP ₃ -DAG, ↑ Ca²-	Leucocitos, bazo	Actividad quimiotáctica Desgranulación de leucocitos Generación de superóxidos PMN
LTC ₄ , LTD ₄ y LTE ₄	Cist-LT tipo 1	G_q	↑ IP ₃ -DAG, ↑ Ca ²⁺	Leucocitos, pulmón, bronquios, macrófagos alveolares, bazo	Broncospamo Secreción de moco Edema de vías respiratorias Desarrollo de asma
	Cist-LT tipo 2	Gq	↑ IP ₃ -DAG, ↑ Ca ²⁺	Corazón, endotelio, placenta, bazo. No se encuentran en el pulmón	Sus funciones aún no se han caracterizado claramente

DAG: diacilglicerol; GI: gastrointestinal; IP₃: inositol-1,4,5-trifosfato. (V. explicación de las restantes siglas en el texto.)

Funciones fisiopatológicas de los eicosanoides

Inflamación

- Derivados de la COX
- Derivados de LOX (LTB₄, LTD₄, LTE₄)
- ⇒ ↑ vasodilatación, permeabilidad vascular, infiltración de leucocitos, fagocitos y quimiotaxis.

Sistema cardiovascular

- •PGs y lipoxinas: vasodilatación
- •Eq. entre PGI₂ en pared vascular y TXA₂ plaquetario.
- •LTC₄ y LTD₄: Contracción arterias coronarias y pulmonares.

Renal

- PGE_2 , PGI_2 y PGD_2 \Rightarrow vasodilatación y \uparrow flujo renal \Rightarrow \uparrow diuresis y secreción de Na+ y K+.
- TXA₂ y PGF_{2 α} \Rightarrow vasoconstricción y \downarrow flujo renal \Rightarrow \downarrow filtración glomerular.

Pulmonar

- PGD_2 , PGE_2 y PGI_2 \Rightarrow broncodilatación y \downarrow secreción bronquial
- Derivados de LOX y Cys-LT
 - Broncoconstricción y aumento de secreción bronquial.
- ⇒ Eficacia antiasmática de antag. rec. LT e inhibidores de 5-LOX

Sistema nervioso

- El ↑ de PGE₂ sobre EP3 en sistema ventriculocerebral o área preóptica del hipotálamo ⇒ hipertermia
- · A nivel de Sistema nervioso periférico:
- ❖ PGE₁, PGE₂, PGI₂ y LTB₄: sensibilizan terminaciones nerviosas nociceptivas e incrementan sensación dolorosa
 ⇒ hiperalgesia por calor, presión, lesión.

Sistema reproductor

•PGs: regulan flujo sanguíneo

PGF2α: Induce luteolisis ⇒ potencia motilidad y contracción uterina (↓ producción de progesterona ⇒ abortiva)

Tracto gastrointestinal

- PGE_2 y PGI_2 \Rightarrow \downarrow producción HCI y pepsina, vasodilatación en mucosa aumento de producción de mucosidad y bicarbonato
 - ⇒ barrera protectora (Citoprotección)
 - ❖ Su inhibición es causa de ulceraciones gastrointestinales.
- El \uparrow de síntesis de TXA_2 y $\mathsf{LTB}_4 \Rightarrow \mathsf{enfermedad}$ inflamatoria intestinal.
- Los eicosanoides regulan tránsito intestinal.

PGI₂

- Prostaciclin-sintetasa
- A nivel microsomal, en células endotelio vascular (COX-2)
- ⇒ Fuerte vasodilatación e inhib. agregación plaquetaria

tubular y metabolismo acuoso (control de PA).

• + PGE₂: regula flujo renal, liberación renina, transporte

 $\mathsf{TXA}_2 \leftrightarrow \mathsf{TXB}_2$

• Tromboxano -sintetasa

- · ITOHIDOXAHO -SIIILELASA
- Células musculares de vasos sanguíneos, células cardíacas y plaquetas (COX-1)

⇒ Fuerte vasoconstricción, broncoconstricción y agregación plaquetaria.

Usos de análogos de PGs

En Obtetricia: Dinoprost (PGE₂):

- Oxitócico para inducir parto en gestaciones problemáticas
- ■Aborto en 1º o 2º trimestre de gestación (+ RU 486).

En Gastroenterología: *Misoprostol* (análogo de PGE₁):

- Prevenir úlcera gastroduodenal en pacientes que toman AINEs.
- En Urología: *Misoprostol*: Inyección intracavernosa para tratar la disfunción eréctil.
- En diálisis: Epoprostenol (PGI₂)
- Inhibir agregación plaquetaria cuando no se tolera la heparina.

En Oftalmología: Latanoprost (PGF_{2α})

■Tratamiento de glaucoma (reducir presión intraocular).

Usos de análogos de PGs

En Pediatría:

- En embarazo: PGI_2 y PGE_2 mantienen conducto arterioso (feto-madre) abierto \Rightarrow paso de sangre materna oxigenada al corazón fetal.
- Si este conducto se mantiene abierto tras el nacimiento:
 - ∘Para favorecer su cierre en prematuros ⇒ Usar inhib.

COX

○Para mantenerlo abierto en recién nacidos con enf.
 congénitas hasta operación quirúrgica ⇒ Administrar i.v.

Alprostadilo (PGE₁)