Operadores y funcionales lineales: problemas propuestos

ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es

Índice

6.	Problemas propuestos				
	6.1.	Funcionales lineales	1		
	6.2.	Aplicaciones bilineales	2		
	6.3.	Aplicaciones sesquilineales	3		
	64	Operador adjunto	4		

6. Problemas propuestos

6.1. Funcionales lineales

- 1. *a*) Sea f un funcional lineal en el espacio vectorial E, $f \neq 0$, y sea N el núcleo de f. Demostrar que existe un vector g con la siguiente propiedad: todo g tiene una representación única g and g donde g to g where g is un escalar conveniente.
 - b) Deducir que dos funcionales lineales con el mismo núcleo son necesariamente múltiplos escalares el uno del otro.
- 2. Sea *X* un espacio prehilbertiano.
 - *a*) Probar que la aplicación $\Lambda: X \to X'$ definida por $(\Lambda y)x = \langle x,y \rangle$ $(x,y \in X)$ es lineal conjugada e isométrica.
 - b) Demostrar que Λ es suprayectiva si, y sólo si, X es un espacio de Hilbert.
- 3. Probar que el dual X' de un espacio prehilbertiano X es un espacio de Hilbert.
- 4. *a*) Dado un espacio prehilbertiano X, denotamos por X'' = (X')' su *bidual*. Demostrar que la aplicación $\Phi: X \to X''$ definida por $(\Phi x)f = f(x)$ $(x \in X, f \in X')$ es un isomorfismo unitario de X en $\mathscr{R}(\Phi) \subset X''$, con $\mathscr{R}(\Phi)$ denso en X''.
 - b) En la notación del apartado anterior, probar que si X es un espacio de Hilbert entonces Φ es sobre (en otras palabras, todo espacio de Hilbert es *reflexivo*). Recíprocamente, demostrar que si Φ es sobre entonces X es un espacio de Hilbert.
 - c) Deducir del apartado a) que todo espacio prehilbertiano admite una compleción, esto es, que dado un espacio prehilbertiano X, existen un espacio de Hilbert H y un isomorfismo unitario T : X → R(T) ⊂ H tales que R(T) es denso en H. Probar que H es único salvo isomorfismos unitarios.
- 5. Demostrar que si X es un espacio prehilbertiano verificando $M^{\perp\perp}=M$ para todo subespacio cerrado M, entonces X es un espacio de Hilbert. [*Sugerencia*: Usar el Ejercicio 2 y repasar la demostración del teorema de representación de Fréchet-Riesz.]
- 6. Sea f un funcional lineal en un espacio de Hilbert, y sea N el núcleo de f.
 - a) Probar que si f no es continuo entonces N es un subespacio denso.
 - b) Deducir que f es continuo si, y sólo si, N es un subespacio cerrado.

I. Marrero

7. Usando el teorema de representación de Fréchet-Riesz, demostrar que si M es un subespacio completo de un espacio prehilbertiano X, entonces $X = M \oplus M^{\perp}$.

- 8. Sean H un espacio de Hilbert, f un funcional lineal continuo sobre H, no idénticamente nulo, y N el núcleo de f. Probar que N^{\perp} es un subespacio unidimensional.
- 9. Demostrar que el dual del espacio ℓ^2 real es ℓ^2 .
- 10. Hallar el vector que según el teorema de Fréchet-Riesz representa a los funcionales definidos sobre ℓ² por:

a)
$$f(x) = x(3) + x(4)$$
;

b)
$$g(x) = \sum_{n=1}^{\infty} x(n)$$
.

11. Definimos

$$\begin{array}{cccc} \varphi: & \ell^2 & \longrightarrow & \mathbb{C} \\ & v & \longmapsto & \varphi(v) = \sum_{n=1}^{\infty} \frac{v(n)}{2^{n-1}}. \end{array}$$

Probar que φ es un funcional lineal continuo sobre ℓ^2 , determinar el vector de ℓ^2 que lo representa según el teorema de Fréchet-Riesz, y calcular $\|\varphi\|$.

12. Definimos

$$\varphi: L^2(\mathbb{R}) \longrightarrow \mathbb{C}$$

$$f \longmapsto \varphi(f) = \int_{-1}^1 3x f(x) \, dx.$$

Demostrar que φ es un funcional lineal continuo sobre $L^2(\mathbb{R})$, determinar el vector de $L^2(\mathbb{R})$ que lo representa según el teorema de Fréchet-Riesz, y calcular $\|\varphi\|$.

6.2. Aplicaciones bilineales

13. Probar que si E, F son espacios vectoriales y $\varphi : E \times E \to F$ es una aplicación bilineal, entonces

$$\varphi(x+y,x+y) - \varphi(x-y,x-y) + i[\varphi(x+iy,x+iy) - \varphi(x-iy,x-iy)] = 0$$
 $(x,y \in E)$.

- 14. Si E, F, G son espacios normados y $\varphi : E \times F \to G$ es una aplicación bilineal, demostrar que son equivalentes:
 - a) φ es acotada.

- b) Si $x_n \xrightarrow[n \to \infty]{} x$ e $y_n \xrightarrow[n \to \infty]{} y$, entonces $\varphi(x_n, y_n) \xrightarrow[n \to \infty]{} \varphi(x, y)$.
- c) Si $x_n \xrightarrow[n \to \infty]{} 0$ e $y_n \xrightarrow[n \to \infty]{} 0$, entonces $\varphi(x_n, y_n) \xrightarrow[n \to \infty]{} 0$.
- 15. Sean E, F espacios normados, B un espacio de Banach. Probar que si M es un subespacio denso de E, N un subespacio denso de F, y $\varphi: M \times N \to B$ una aplicación bilineal acotada, entonces existe una única aplicación bilineal acotada $\varphi: E \times F \to B$ tal que $\varphi(x,y) = \varphi(x,y)$ ($x \in M, y \in N$).
- 16. Sean E, F, G espacios normados y $\varphi: E \times F \to G$ una aplicación bilineal, continua en cada variable. Demostrar que si E ó F es un espacio de Banach, entonces φ es acotada.

6.3. Aplicaciones sesquilineales

17. Sean E, F espacios vectoriales y $\varphi: E \times E \to F$ una aplicación bilineal o sesquilineal. Probar que φ satisface la «ley del paralelogramo»:

$$\varphi(x+y,x+y)+\varphi(x-y,x-y)=2\varphi(x,x)+2\varphi(y,y)\quad (x,y\in E).$$

- 18. Demostrar que si X es un espacio prehilbertiano, G un espacio normado y $\varphi: X \times X \to G$ una aplicación bilineal acotada verificando $\varphi(y,x) = \varphi(x,y)$ ($x,y \in X$), entonces $\|\varphi\| = \sup\{\|\varphi(x,x)\| : x \in X, \|x\| \le 1\}$.
- 19. Probar que el producto interior de un espacio prehilbertiano *X* es una forma sesquilineal acotada en *X*. ¿Cuál es su norma?
- 20. Una *seminorma* en el espacio vectorial E es una aplicación $p: E \to \mathbb{R}$ que satisface los siguientes axiomas:
 - (i) $p(x) \ge 0 \ (x \in E);$
 - (ii) $p(\lambda x) = |\lambda| p(x) \ (\lambda \in \mathbb{K}, x \in E);$
 - (iii) $p(x+y) \le p(x) + p(y) \ (x, y \in E)$.

Demostrar que si φ es una forma sesquilineal positiva en un espacio vectorial E, entonces $p(x) = \varphi(x,x)^{1/2}$ $(x \in E)$ define una seminorma sobre E.

- 21. Sean X, Y espacios prehilbertianos y sean X^* , Y^* sus espacios prehilbertianos complejos conjugados. Probar que son equivalentes:
 - a) $T: X \to Y$ es lineal conjugado, y $\langle Tx, Ty \rangle = \langle y, x \rangle$ $(x, y \in X)$.

4/4 I. Marrero

- b) $T: X \to Y^*$ es lineal, $y[Tx, Ty] = \langle x, y \rangle (x, y \in X)$.
- c) $T: X^* \to Y$ es lineal, $y \langle Tx, Ty \rangle = [x, y] (x, y \in X^*)$.

[*Observación*: Si X=Y, un operador suprayectivo T que satisfaga a) se llama una *conjugación* del espacio prehilbertiano X. Por ejemplo, $(Tx)(n)=\overline{x(n)}\ (x\in\ell^2,\ n\in\mathbb{N})$ define una conjugación del espacio de Hilbert ℓ^2 .]

- 22. Sea H un espacio de Hilbert. Demostrar:
 - a) La aplicación $U: H \to (H')^*$ que a cada $x \in H$ le hace corresponder el funcional lineal continuo Ux = x' definido por x sobre H es un isomorfismo vectorial.
 - b) $(H')^*$ es un espacio de Hilbert con el producto escalar $[x',y'] = \langle y',x' \rangle$ $(x',y' \in (H')^*)$. El operador $T: H \to H'$ definido por Tx = x' $(x \in H)$ satisface la condición a) del Ejercicio 21.
 - c) La aplicación $U: H \to (H')^*$ es un isomorfismo unitario.
- 23. Sean X, Y espacios prehilbertianos y sea $T: X \to Y$ una aplicación tal que $\langle Tu, Tv \rangle = \langle v, u \rangle$ $(u, v \in X)$. Probar:
 - a) Si $\mathcal{R}(T)$ es un subespacio de Y, entonces T es lineal conjugada.
 - b) En particular, si X = Y y T es suprayectiva, entonces T es una conjugación de X (cf. Ejercicio 21).
 - c) Si X = H es un espacio de Hilbert y $\mathcal{R}(T)$ es un subconjunto total de Y, entonces T es sobre.

6.4. Operador adjunto

- 24. Sean X, Y espacios prehilbertianos, y supongamos que $T: X \to Y$, $S: Y \to X$ son aplicaciones que verifican $\langle Tx, y \rangle = \langle x, Sy \rangle$ $(x \in X, y \in Y)$. Demostrar:
 - a) S, T son lineales.
 - b) Si X = H es un espacio de Hilbert, entonces S, T son continuas.
 - c) Si, además, Y = K es un espacio de Hilbert, entonces $S = T^*$.
- 25. Sea S un operador lineal acotado en un espacio de Hilbert, tal que $S^*S = 0$. Probar que S = 0.
- 26. Demostrar que dos operadores lineales cualesquiera *S*, *T* sobre un espacio de Hilbert satisfacen la «identidad de polarización»:

$$4T^*S = (S+T)^*(S+T) - (S-T)^*(S-T) + i[(S+iT)^*(S+iT) - (S-iT)^*(S-iT)].$$

OCW-ULL 2011/12 Teoría de Operadores