## Banach spaces: fundamental theorems problem set

ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es





- 1. Let  $(X, \|\cdot\|)$  be a normed space.
  - a) (*Riesz lemma*) Assume *M* is a proper closed subspace of *X*. Let  $0 < \theta < 1$  be given. Show that there is an  $x \in X$  such that ||x|| = 1 and  $||x z|| \ge \theta$  ( $z \in M$ ).
  - b) Let B be the closed unit ball of X,  $B = \{x \in X : ||x|| \le 1\}$ . Prove that B is compact if, and only if, X is finitedimensional.
- 2. Let  $(X, \|\cdot\|)$  be a normed space. Show that:
  - a) There exist a Banach space  $\widetilde{X}$  and an isometry  $T: X \to T(X) \subset \widetilde{X}$  such that T(X) is a dense subspace of  $\widetilde{X}$ .
  - b) The space  $\widetilde{X}$  is unique up to isometries.

[*Remark:*  $\widetilde{X}$  is called the *completion* of X.]

3. Let  $X_i$  be normed vector spaces, with norms  $\|\cdot\|_i$   $(1 \le i \le n)$ . The cartesian product space  $X_1 \times X_2 \times \cdots \times X_n = \prod_{i=1}^n X_i$  is defined by

$$\prod_{i=1}^{n} X_{i} = \{(x_{1}, x_{2}, \dots, x_{n}) : x_{i} \in X_{i} \ (1 \le i \le n)\}$$

In  $\prod_{i=1}^{n} X_i$  we consider coordinatewise addition:

$$(x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$
  $(x_i, y_i \in X_i, 1 \le i \le n)$ 

and coordinatewise scalar multiplication:

$$\lambda(x_1, x_2, \ldots, x_n) = (\lambda x_1, \lambda x_2, \ldots, \lambda x_n) \quad (\lambda \in \mathbb{K}, x_i \in X_i, 1 \le i \le n).$$

The space  $\prod_{i=1}^{n} X_i$  is endowed with the norm

$$||(x_1, x_2, \dots, x_n)|| = \sum_{i=1}^n ||x_i||_i.$$

Show that:

- a)  $(\prod_{i=1}^{n} X_i, \|\cdot\|)$  is indeed a normed vector space.
- b) If all the spaces  $(X_i, \|\cdot\|_i)$   $(1 \le i \le n)$  are Banach spaces, then so is  $(\prod_{i=1}^n X_i, \|\cdot\|)$ .

4. In  $\ell^{\infty}$  we consider the sets  $U_1$  and  $U_2$ , where  $U_1 = c_{00}$  consists of all scalar sequences with only finitely many nonzero terms and  $U_2$  is the set of scalar sequences with all but the *N* first elements equal to zero.

- a) Are  $U_1$  and/or  $U_2$  closed subspaces of  $\ell^{\infty}$ ?
- b) Are  $U_1$  and/or  $U_2$  finite dimensional?

- 5. Consider in  $\ell^p$   $(1 \le p \le \infty)$  the subspace  $c_{00}$  consisting of all sequences which are eventually zero.
  - a) If  $1 \le p < \infty$ , is  $c_{00}$  dense in  $\ell^p$ ?
  - b) Is  $c_{00}$  dense in  $\ell^{\infty}$ ?

## 6. Prove that

- a)  $\ell^p \ (1 \le p < \infty)$  is separable, but
- b)  $\ell^{\infty}$  is not separable.
- 7. The space  $C^1[a,b] \subset C[a,b]$  can be endowed with the sup-norm

$$||f||_{\infty} = \sup_{t \in [a,b]} |f(t)| \quad (f \in C[a,b]).$$

Show that:

- a) Taking  $\sup_{t \in (a,b)} |f(t)|$  results in an equivalent norm on C[a,b].
- b)  $(C^1[a,b], \|\cdot\|_{\infty})$  is not a Banach space.
- c) The map given by

$$||f||_{\infty}^{*} = \sup_{t \in [a,b]} |f(t)| + \sup_{t \in [a,b]} |f'(t)|$$

is also a norm on  $C^{1}[a, b]$  which endows it with a Banach space structure.

- 8. (Subspace topology) Let X be a topological space, and let  $Y \subset X$ . Recall that the subspace topology is defined on Y by declaring open all the sets of the form  $U \cap Y$ , where U is open in X. Denote by  $Cl_X$  and  $Int_X$  the closure and interior with respect to X, and by  $Cl_Y$  and  $Int_Y$  the closure and interior with respect to the subspace topology on Y. Prove that:
  - a)  $F \subset Y$  is closed in Y if, and only if, there exists a closed set G in X such that  $F = G \cap Y$ .

b) 
$$\operatorname{Cl}_Y(A) = \operatorname{Cl}_X(A) \cap Y \ (A \subset Y).$$

c) 
$$\operatorname{Int}_Y(A) = \operatorname{Int}_X(A \cup (X \setminus Y)) \cap Y \ (A \subset Y).$$

- 9. Let X be a metric space. Show that every subset of a nowhere dense set in X is nowhere dense in X.
- 10. Let *X* be a metric space. Prove that the boundary of an open or closed set  $A \subset X$  is nowhere dense. Show by counterexample that this conclusion may not hold if *A* is neither open nor closed.
- 11. Prove that a subset *A* of a metric space *X* is nowhere dense if, and only if, for every nonempty open set  $U \subset X$  there exists a nonempty open set  $V \subset U$  such that  $V \cap A = \emptyset$ .
- 12. Show that the union of a finite number of nowhere dense sets is nowhere dense.
- 13. Let *X* be a metric space and let  $A \subset Y \subset X$ . Prove the following:

- a) If A is nowhere dense in the subspace topology of Y, then A is nowhere dense in X.
- b) Conversely, if Y is open (or dense) in X and A is nowhere dense in X, then A is nowhere dense in the subspace topology of Y.

Show that the conclusion in b) may fail if Y is neither open nor dense in X.

- 14. Let *X* be a complete metric space.
  - *a*) Prove that if  $A \subset X$  is nowhere dense and  $G \subset X$  is open, then there exists a closed ball  $B \subset G$  such that  $B \cap A = \emptyset$ . [Cf. Exercise 11.] Moreover, given any k > 0, B can be chosen so that  $\delta(B) < k$ .
  - b) Deduce from *a*) the following weak form of the Baire category theorem: *Every complete metric space*  $X \neq \emptyset$  *is of the second category*.
- 15. Show the equivalence of the following statements:
  - *a*) Every complete metric space has the Baire property.
  - b) Every complete metric space is of the second category.
- 16. Consider the metric space  $\mathbb{Q}$  endowed with the subspace topology inherited from that of  $\mathbb{R}$ .
  - *a*) Explain why  $\mathbb{Q}$  is not complete with this topology.
  - b) Prove that every open set in  $\mathbb{Q}$  is of the first category in  $\mathbb{Q}$ . Therefore, noncomplete metric spaces may contain open subsets of the first category.
- 17. a) Let  $(U_1, d_1)$ ,  $(U_2, d_2)$  be metric spaces such that  $U_1 \cap U_2 = \emptyset$ . Define d on  $(U_1 \cup U_2) \times (U_1 \cup U_2)$  by:

$$d(x,y) = \begin{cases} 1, & x \in U_1 \text{ and } y \in U_2, \text{ or } x \in U_2 \text{ and } y \in U_1 \\ \\ d_1(x,y), & x,y \in U_1 \\ \\ d_2(x,y), & x,y \in U_2. \end{cases}$$

Prove that  $(U_1 \cup U_2, d)$  is a metric space, called the *disjoint union* of  $(U_1, d_1)$  and  $(U_2, d_2)$ , and denoted by  $U_1 \sqcup U_2$ .

- b) Let *Y* be any complete metric space, and let *X* be the disjoint union  $Y \sqcup \mathbb{Q}$ , where  $\mathbb{Q}$  is endowed with its usual topology, inherited from that of  $\mathbb{R}$ . Show that *X* is a metric space of the second category without the Baire property.
- 18. Show that a normed space is Baire if, and only if, it is of the second category.
- 19. Prove the following statements.
  - *a*) Let  $A \subset B \subset C$  be three sets in a topological space. If *A* is nowhere dense (resp. of the first category) in *B*, then *A* is nowhere dense (resp. of the first category) in *C*.

- *b)* (*Incomplete normed space of the second category*) Every infinite-dimensional Banach space X contains a dense hyperplane which is of the second category in itself.
- 20. (Incomplete normed space of the second category) Let  $\{x_n\}_{n=1}^{\infty}$  be a linearly independent sequence in a Banach space. Show that there exists a non-closed subspace  $Y \subset X$  which is of the second category in X (hence in itself) and contains at most finitely many terms of  $\{x_n\}_{n=1}^{\infty}$ .
- 21. Prove the following assertions:
  - a) Proper subspaces of normed spaces have empty interior.
  - b) No infinite-dimensional Banach space can have a countable Hamel basis.
- 22. Let *X* be a Baire space. Show that:
  - a) The intersection of any countable family of  $G_{\delta}$  dense subsets of X is a  $G_{\delta}$  dense subset of X.
  - b) If G is a  $G_{\delta}$  dense subset of X then, with the topology inherited from X, G is a Baire space.
- 23. Suppose  $f : \mathbb{C} \to \mathbb{C}$  is an entire function satisfying the following: for every complex number *z*, there exists  $n = n(z) \in \mathbb{N}$  such that  $f^{(n)}(z) = 0$ . Does this imply that *f* must be a polynomial?
- 24. Suppose *X* is a Banach space, *Y* is a normed linear space, and  $\{\Lambda_{\alpha}\}_{\alpha \in A}$  is a collection of bounded linear transformations from *X* to *Y*, where *A* is some index set. Prove that either there exists an M > 0 such that

$$\|\Lambda_{\alpha}\| \leq M \quad (\alpha \in A),$$

or

$$\sup_{\alpha \in A} \|\Lambda_{\alpha} x\| = \infty$$

for all *x* belonging to some dense  $G_{\delta}$  in *X*. [*Remark:* In geometric terminology, the alternatives are as follows: either there is a ball *B* in *Y* (with radius *M* and center at 0) such that every  $\Lambda_{\alpha}$  maps the unit ball of *X* into *B*, or there exist  $x \in X$  (in fact, a whole dense  $G_{\delta}$  of them) such that no ball in *Y* contains  $\Lambda_{\alpha} x$  for all  $\alpha$ .]

25. Assume X is a Banach space, Y a normed space, and  $\mathscr{A}$  a family of bounded linear operators from X to Y. Set

$$B = \{x \in X : \sup\{\|Tx\| : T \in \mathscr{A}\} < \infty\}.$$

Prove the equivalence of the following statements:

- a) B is of the second category in X.
- b) B = X, that is,  $\mathscr{A}$  is pointwise bounded.
- c)  $\mathscr{A}$  is uniformly bounded: there exists M > 0 such that  $||T|| \le M$  for all  $T \in \mathscr{A}$ .

- 26. Let  $\{T_n\}_{n=1}^{\infty}$  be a sequence of bounded linear maps from *X* to *Y*, where both *X* and *Y* are Banach spaces. Show that a necessary and sufficient condition for  $\lim_{n\to\infty} T_n x$  to exist for each  $x \in X$  is:
  - a)  $\lim_{n\to\infty} T_n x$  exists for all x in a dense subset of X, and
  - b)  $\{||T_n||\}_{n=1}^{\infty}$  is bounded.
- 27. Let  $\{\Lambda_n\}_{n=1}^{\infty}$  be a sequence of linear functionals defined on C[0,1], of the form

$$\Lambda_n f = \sum_{k=0}^{N_n} A_{n,k} f(t_{n,k}) \quad (f \in C[0,1]),$$

where, for each  $n \in \mathbb{N}$ ,  $\{t_{n,k}\}_{k=0}^{N_n}$  is a finite family of points in [0,1] (called *nodes* of  $\Lambda_n$ ). The sequence  $\{\Lambda_n\}_{n=1}^{\infty}$  is said to be a *quadrature method* provided that

$$\int_0^1 f(t) dt = \lim_{n \to \infty} \Lambda_n f \quad (f \in C[0, 1]).$$

Show that:

- *a*) For each  $n \in \mathbb{N}$ ,  $\Lambda_n$  is a continuous linear functional on C[0, 1], with norm  $||\Lambda_n|| = \sum_{k=0}^{N_n} |A_{n,k}|$ .
- b) The sequence  $\{\Lambda_n\}_{n=1}^{\infty}$  is a quadrature method if, and only if, the two following conditions hold:
  - *i*)  $\lim_{n\to\infty} \Lambda_n(x^{k-1}) = 1/k$   $(k \in \mathbb{N})$ , and
  - *ii*)  $\sup_{n\in\mathbb{N}}\sum_{k=0}^{N_n}|A_{n,k}|<\infty$ .
- c) If  $A_{n,k} \ge 0$  for every *n* and *k*, then *i*) implies *ii*).
- 28. Let  $\{\alpha(n)\}_{n=1}^{\infty}$  be a sequence of complex numbers, and let  $1 \le p \le \infty$ . Let q be the exponent conjugate to p, that is, q satisfies  $1 \le q \le \infty$  and

$$\frac{1}{p} + \frac{1}{q} = 1,$$

with the convention that  $1/\infty = 0$  (thus, 1 and  $\infty$  are conjugate exponents). Assume that the series  $\sum_{n=1}^{\infty} \alpha(n)\xi(n)$  converges for every sequence  $\{\xi(n)\}_{n=1}^{\infty} \in \ell^p$ . Prove that then  $\{\alpha(n)\}_{n=1}^{\infty} \in \ell^q$ .

29. As a consequence of the uniform boundedness principle, it can be proved that if *E* is a Banach space and *F* a normed space, then every separately continuous bilinear map  $B: E \times E \to F$  is jointly continuous. By means of the following counterexample, show that this might not be the case when *E* is not complete: take for *E* the linear space of all real polynomials p = p(t), equipped with the norm

$$||p||_1 = \int_0^1 |p(t)| dt \quad (p \in E).$$

and for B the bilinear functional defined by

$$B(p,q) = \int_0^1 p(t)q(t) dt \quad (p,q \in E).$$

- 30. Let *X*, *Y* be pre-Hilbert spaces, and assume that the maps  $T : X \to Y$ ,  $S : Y \to X$  satisfy  $\langle Tx, y \rangle = \langle x, Sy \rangle$  ( $x \in X, y \in Y$ ). Prove the following statements:
  - a) S, T are linear.
  - b) If X = H is Hilbert, then S, T are continuous.
  - c) If, further, Y = K is Hilbert, then  $S = T^*$ .
- 31. Let X be a Banach space. Recall that a sequence  $\{x_n\}_{n=1}^{\infty}$  is called a *Schauder basis* for X if to each  $x \in X$  there correspond unique scalars  $a_n(x)$   $(n \in \mathbb{N})$  such that

$$x = \sum_{n=1}^{\infty} a_n(x) x_n,$$

where the series converges in the norm of *X*. It can be shown (this may be taken for granted) that  $a_n \in X'$  for each  $n \in \mathbb{N}$ . Suppose that  $\{x_n\}_{n=1}^{\infty}$  is a Schauder basis for a Banach space *X* and  $\{y_n\}_{n=1}^{\infty}$  is a Schauder basis for a Banach space *Y*. Prove that the following two statements are equivalent:

- *a*) There exists a continuous linear bijection  $S: X \to Y$  such that  $Sx_n = y_n$  for each  $n \in \mathbb{N}$ .
- b) Given scalars  $c_n$   $(n \in \mathbb{N})$ ,  $\sum_{n=1}^{\infty} c_n x_n$  converges in X if, and only if,  $\sum_{n=1}^{\infty} c_n y_n$  converges in Y.
- 32. Let *T* be a bounded operator from a Banach space *X* to a normed space *Y* such that *T* is not onto, but  $\mathscr{R}(T)$  is dense in *Y*. Prove that  $\mathscr{R}(T)$  is of the first category and not nowhere dense.
- 33. Prove the following strong version of the open mapping theorem. Let *T* be a bounded linear map from a Banach space *X* into a normed linear space *Y*. If the image  $\mathscr{R}(T)$  is of the second category in *Y*, then:
  - a) T is surjective (i.e.  $\mathscr{R}(T) = Y$ ).
  - b) T is an open mapping.
  - c) Y is complete.

34. Let  $1 \le p < q \le \infty$ .

- a) Show that the inclusion map  $L^q[0,1] \hookrightarrow L^p[0,1]$  is continuous, but not onto.
- b) What can be said of the category of  $L^{q}[0,1]$  as a subspace of  $L^{p}[0,1]$ ?
- 35. A linear operator  $T: X \to Y$  is said to be *bounded below* if there exists a constant  $\alpha > 0$  such that

$$||Tx|| \ge \alpha ||x|| \quad (x \in X).$$

- a) T is bounded below.
- b)  $T^{-1}: \mathscr{R}(T) \to X$  exists and is bounded.

Further, if *T* is a continuous linear operator from *X* to *Y* and if *X* is a Banach space, then each of the above equivalent assertions implies that  $\overline{\mathscr{R}(T)} = \mathscr{R}(T)$ .

- 36. Let us consider the spaces C[0,1] and  $C^1[0,1]$  (respectively, functions continuous and of class  $C^1$  in the interval [0,1]; in the latter case we assume the existence of one-sided continuous derivatives at the interval endpoints), endowed with the sup-norm.
  - a) Show that the differential operator  $D: C^{1}[0,1] \rightarrow C[0,1]$  mapping f to Df = f' has closed graph, but is unbounded.
  - b) Why does not a) contradict the closed graph theorem?
- 37. Let  $T : \mathscr{D}(T) \to Y$  be a bounded linear operator with domain  $\mathscr{D}(T) \subset X$ , where *X* and *Y* are normed spaces. Show that:
  - *a*) If  $\mathscr{D}(T)$  is a closed subset of *X*, then *T* has closed graph.
  - b) If T has closed graph and Y is complete, then  $\mathscr{D}(T)$  is a closed subset of X.