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1. Let (X ,‖ · ‖) be a normed space.

a) (Riesz lemma) Assume M is a proper closed subspace of X . Let 0 < θ < 1 be given. Show that there is an x ∈ X such

that ‖x‖= 1 and ‖x− z‖ ≥ θ (z ∈M).

b) Let B be the closed unit ball of X , B = {x ∈ X : ‖x‖ ≤ 1}. Prove that B is compact if, and only if, X is finite-

dimensional.

2. Let (X ,‖ · ‖) be a normed space. Show that:

a) There exist a Banach space X̃ and an isometry T : X → T (X)⊂ X̃ such that T (X) is a dense subspace of X̃ .

b) The space X̃ is unique up to isometries.

[Remark: X̃ is called the completion of X .]

3. Let Xi be normed vector spaces, with norms ‖ · ‖i (1≤ i≤ n). The cartesian product space X1×X2×·· ·×Xn = ∏
n
i=1 Xi is

defined by
n

∏
i=1

Xi = {(x1,x2, . . . ,xn) : xi ∈ Xi (1≤ i≤ n)} .

In ∏
n
i=1 Xi we consider coordinatewise addition:

(x1,x2, . . . ,xn)+(y1,y2, . . . ,yn) = (x1 + y1,x2 + y2, . . . ,xn + yn) (xi,yi ∈ Xi, 1≤ i≤ n)

and coordinatewise scalar multiplication:

λ (x1,x2, . . . ,xn) = (λx1,λx2, . . . ,λxn) (λ ∈K, xi ∈ Xi, 1≤ i≤ n) .

The space ∏
n
i=1 Xi is endowed with the norm

‖(x1,x2, . . . ,xn)‖=
n

∑
i=1
‖xi‖i.

Show that:

a) (∏n
i=1 Xi,‖ · ‖) is indeed a normed vector space.

b) If all the spaces (Xi,‖ · ‖i) (1≤ i≤ n) are Banach spaces, then so is (∏n
i=1 Xi,‖ · ‖).

4. In `∞ we consider the sets U1 and U2, where U1 = c00 consists of all scalar sequences with only finitely many nonzero

terms and U2 is the set of scalar sequences with all but the N first elements equal to zero.

a) Are U1 and/or U2 closed subspaces of `∞?

b) Are U1 and/or U2 finite dimensional?

ANÁLISIS FUNCIONAL OCW-ULL 2022



2/7 I. MARRERO

5. Consider in `p (1≤ p≤ ∞) the subspace c00 consisting of all sequences which are eventually zero.

a) If 1≤ p < ∞, is c00 dense in `p?

b) Is c00 dense in `∞?

6. Prove that

a) `p (1≤ p < ∞) is separable, but

b) `∞ is not separable.

7. The space C1[a,b]⊂C[a,b] can be endowed with the sup-norm

‖ f‖∞ = sup
t∈[a,b]

| f (t)| ( f ∈C[a,b]).

Show that:

a) Taking supt∈(a,b) | f (t)| results in an equivalent norm on C[a,b].

b)
(
C1[a,b],‖ · ‖∞

)
is not a Banach space.

c) The map given by

‖ f‖∗∞ = sup
t∈[a,b]

| f (t)|+ sup
t∈[a,b]

∣∣ f ′(t)∣∣
is also a norm on C1[a,b] which endows it with a Banach space structure.

8. (Subspace topology) Let X be a topological space, and let Y ⊂ X . Recall that the subspace topology is defined on Y by

declaring open all the sets of the form U ∩Y , where U is open in X . Denote by ClX and IntX the closure and interior with

respect to X , and by ClY and IntY the closure and interior with respect to the subspace topology on Y . Prove that:

a) F ⊂ Y is closed in Y if, and only if, there exists a closed set G in X such that F = G∩Y .

b) ClY (A) = ClX (A)∩Y (A⊂ Y ).

c) IntY (A) = IntX (A∪ (X \Y ))∩Y (A⊂ Y ).

9. Let X be a metric space. Show that every subset of a nowhere dense set in X is nowhere dense in X .

10. Let X be a metric space. Prove that the boundary of an open or closed set A⊂X is nowhere dense. Show by counterexample

that this conclusion may not hold if A is neither open nor closed.

11. Prove that a subset A of a metric space X is nowhere dense if, and only if, for every nonempty open set U ⊂ X there exists

a nonempty open set V ⊂U such that V ∩A = /0.

12. Show that the union of a finite number of nowhere dense sets is nowhere dense.

13. Let X be a metric space and let A⊂ Y ⊂ X . Prove the following:

OCW-ULL 2022 ANÁLISIS FUNCIONAL



BANACH SPACES: FUNDAMENTAL THEOREMS PROBLEM SET 3/7

a) If A is nowhere dense in the subspace topology of Y , then A is nowhere dense in X .

b) Conversely, if Y is open (or dense) in X and A is nowhere dense in X , then A is nowhere dense in the subspace

topology of Y .

Show that the conclusion in b) may fail if Y is neither open nor dense in X .

14. Let X be a complete metric space.

a) Prove that if A ⊂ X is nowhere dense and G ⊂ X is open, then there exists a closed ball B ⊂ G such that B∩A = /0.

[Cf. Exercise 11.] Moreover, given any k > 0, B can be chosen so that δ (B)< k.

b) Deduce from a) the following weak form of the Baire category theorem: Every complete metric space X 6= /0 is of the

second category.

15. Show the equivalence of the following statements:

a) Every complete metric space has the Baire property.

b) Every complete metric space is of the second category.

16. Consider the metric space Q endowed with the subspace topology inherited from that of R.

a) Explain why Q is not complete with this topology.

b) Prove that every open set in Q is of the first category in Q. Therefore, noncomplete metric spaces may contain open

subsets of the first category.

17. a) Let (U1,d1), (U2,d2) be metric spaces such that U1∩U2 = /0. Define d on (U1∪U2)× (U1∪U2) by:

d(x,y) =


1, x ∈U1 and y ∈U2, or x ∈U2 and y ∈U1

d1(x,y), x,y ∈U1

d2(x,y), x,y ∈U2.

Prove that (U1∪U2,d) is a metric space, called the disjoint union of (U1,d1) and (U2,d2), and denoted by U1tU2.

b) Let Y be any complete metric space, and let X be the disjoint union Y tQ, where Q is endowed with its usual

topology, inherited from that of R. Show that X is a metric space of the second category without the Baire property.

18. Show that a normed space is Baire if, and only if, it is of the second category.

19. Prove the following statements.

a) Let A⊂ B⊂C be three sets in a topological space. If A is nowhere dense (resp. of the first category) in B, then A is

nowhere dense (resp. of the first category) in C.
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b) (Incomplete normed space of the second category) Every infinite-dimensional Banach space X contains a dense

hyperplane which is of the second category in itself.

20. (Incomplete normed space of the second category) Let {xn}∞
n=1 be a linearly independent sequence in a Banach space.

Show that there exists a non-closed subspace Y ⊂ X which is of the second category in X (hence in itself) and contains at

most finitely many terms of {xn}∞
n=1.

21. Prove the following assertions:

a) Proper subspaces of normed spaces have empty interior.

b) No infinite-dimensional Banach space can have a countable Hamel basis.

22. Let X be a Baire space. Show that:

a) The intersection of any countable family of Gδ dense subsets of X is a Gδ dense subset of X .

b) If G is a Gδ dense subset of X then, with the topology inherited from X , G is a Baire space.

23. Suppose f : C→ C is an entire function satisfying the following: for every complex number z, there exists n = n(z) ∈ N

such that f (n)(z) = 0. Does this imply that f must be a polynomial?

24. Suppose X is a Banach space, Y is a normed linear space, and {Λα}α∈A is a collection of bounded linear transformations

from X to Y , where A is some index set. Prove that either there exists an M > 0 such that

‖Λα‖ ≤M (α ∈ A),

or

sup
α∈A
‖Λα x‖= ∞

for all x belonging to some dense Gδ in X . [Remark: In geometric terminology, the alternatives are as follows: either there

is a ball B in Y (with radius M and center at 0 ) such that every Λα maps the unit ball of X into B, or there exist x ∈ X (in

fact, a whole dense Gδ of them) such that no ball in Y contains Λα x for all α .]

25. Assume X is a Banach space, Y a normed space, and A a family of bounded linear operators from X to Y . Set

B = {x ∈ X : sup{‖T x‖ : T ∈A }< ∞} .

Prove the equivalence of the following statements:

a) B is of the second category in X .

b) B = X , that is, A is pointwise bounded.

c) A is uniformly bounded: there exists M > 0 such that ‖T‖ ≤M for all T ∈A .
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26. Let {Tn}∞

n=1 be a sequence of bounded linear maps from X to Y , where both X and Y are Banach spaces. Show that a

necessary and sufficient condition for limn→∞ Tnx to exist for each x ∈ X is:

a) limn→∞ Tnx exists for all x in a dense subset of X , and

b) {‖Tn‖}∞

n=1 is bounded.

27. Let {Λn}∞
n=1 be a sequence of linear functionals defined on C[0,1], of the form

Λn f =
Nn

∑
k=0

An,k f (tn,k) ( f ∈C[0,1]),

where, for each n ∈ N, {tn,k}Nn
k=0 is a finite family of points in [0,1] (called nodes of Λn). The sequence {Λn}∞

n=1 is said to

be a quadrature method provided that

∫ 1

0
f (t)dt = lim

n→∞
Λn f ( f ∈C[0,1]).

Show that:

a) For each n ∈ N, Λn is a continuous linear functional on C[0,1], with norm ‖Λn‖= ∑
Nn
k=0 |An,k|.

b) The sequence {Λn}∞
n=1 is a quadrature method if, and only if, the two following conditions hold:

i) limn→∞ Λn(xk−1) = 1/k (k ∈ N), and

ii) supn∈N ∑
Nn
k=0 |An,k|< ∞.

c) If An,k ≥ 0 for every n and k, then i) implies ii).

28. Let {α(n)}∞
n=1 be a sequence of complex numbers, and let 1 ≤ p ≤ ∞. Let q be the exponent conjugate to p, that is, q

satisfies 1≤ q≤ ∞ and
1
p
+

1
q
= 1,

with the convention that 1/∞= 0 (thus, 1 and ∞ are conjugate exponents). Assume that the series ∑
∞
n=1 α(n)ξ (n) converges

for every sequence {ξ (n)}∞

n=1 ∈ `p. Prove that then {α(n)}∞

n=1 ∈ `q.

29. As a consequence of the uniform boundedness principle, it can be proved that if E is a Banach space and F a normed

space, then every separately continuous bilinear map B : E ×E → F is jointly continuous. By means of the following

counterexample, show that this might not be the case when E is not complete: take for E the linear space of all real

polynomials p = p(t), equipped with the norm

‖p‖1 =
∫ 1

0
|p(t)|dt (p ∈ E),
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and for B the bilinear functional defined by

B(p,q) =
∫ 1

0
p(t)q(t)dt (p,q ∈ E).

30. Let X , Y be pre-Hilbert spaces, and assume that the maps T : X → Y , S : Y → X satisfy 〈T x,y〉 = 〈x,Sy〉 (x ∈ X , y ∈ Y ).

Prove the following statements:

a) S, T are linear.

b) If X = H is Hilbert, then S, T are continuous.

c) If, further, Y = K is Hilbert, then S = T ∗.

31. Let X be a Banach space. Recall that a sequence {xn}∞
n=1 is called a Schauder basis for X if to each x ∈ X there correspond

unique scalars an(x) (n ∈ N) such that

x =
∞

∑
n=1

an(x)xn,

where the series converges in the norm of X . It can be shown (this may be taken for granted) that an ∈ X ′ for each n ∈ N.

Suppose that {xn}∞
n=1 is a Schauder basis for a Banach space X and {yn}∞

n=1 is a Schauder basis for a Banach space Y .

Prove that the following two statements are equivalent:

a) There exists a continuous linear bijection S : X → Y such that Sxn = yn for each n ∈ N.

b) Given scalars cn (n ∈ N), ∑
∞
n=1 cnxn converges in X if, and only if, ∑

∞
n=1 cnyn converges in Y .

32. Let T be a bounded operator from a Banach space X to a normed space Y such that T is not onto, but R(T ) is dense in Y .

Prove that R(T ) is of the first category and not nowhere dense.

33. Prove the following strong version of the open mapping theorem. Let T be a bounded linear map from a Banach space X

into a normed linear space Y . If the image R(T ) is of the second category in Y , then:

a) T is surjective (i.e. R(T ) = Y ).

b) T is an open mapping.

c) Y is complete.

34. Let 1≤ p < q≤ ∞.

a) Show that the inclusion map Lq[0,1] ↪→ Lp[0,1] is continuous, but not onto.

b) What can be said of the category of Lq[0,1] as a subspace of Lp[0,1]?

35. A linear operator T : X → Y is said to be bounded below if there exists a constant α > 0 such that

‖T x‖ ≥ α‖x‖ (x ∈ X).
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Let T be a linear operator from a normed linear space X to a normed linear space Y. Show that the following are equivalent:

a) T is bounded below.

b) T−1 : R(T )→ X exists and is bounded.

Further, if T is a continuous linear operator from X to Y and if X is a Banach space, then each of the above equivalent

assertions implies that R(T ) = R(T ).

36. Let us consider the spaces C[0,1] and C1[0,1] (respectively, functions continuous and of class C1 in the interval [0,1]; in

the latter case we assume the existence of one-sided continuous derivatives at the interval endpoints), endowed with the

sup-norm.

a) Show that the differential operator D : C1[0,1]→C[0,1] mapping f to D f = f ′ has closed graph, but is unbounded.

b) Why does not a) contradict the closed graph theorem?

37. Let T : D(T )→ Y be a bounded linear operator with domain D(T )⊂ X , where X and Y are normed spaces. Show that:

a) If D(T ) is a closed subset of X , then T has closed graph.

b) If T has closed graph and Y is complete, then D(T ) is a closed subset of X .
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