An introduction to the spectral theory of linear operators problem set

ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es

- 1. Show that:
 - a) The weak topology of a normed space is a vector space topology.
 - b) The weak closure of a subspace (resp. convex set) is also a subspace (resp. convex set).
- 2. In a topological vector space *X*, a set $A \subset X$ is said to be *bounded* if it can be completely absorbed by every neighborhood of zero, that is, if to every zero neighborhood *V*, there corresponds t > 0 such that $A \subset tV$. Assume *X* is a normed space.
 - a) Prove that weak boundedness and norm boundedness fit into this definition.
 - b) Recalling that weak and norm boundedness are equivalent, show that non-trivial subspaces are (weakly, strongly) unbounded.
 - c) Prove that weakly open subsets of infinite-dimensional normed spaces are unbounded.
- 3. Show that the weak topology of infinite-dimensional normed spaces is not metrizable.
- 4. Prove that in a normed space *X* we have $x_n \rightarrow x$ weakly if, and only if,
 - a) the sequence $\{||x_n||\}_{n=1}^{\infty}$ is bounded, and
 - b) for every element f of a total subset $M \subset X'$, we have $\lim_{n\to\infty} f(x_n) = f(x)$.
- 5. (*Hilbert space*) Let $(H, \langle \cdot, \cdot \rangle)$ be a Hilbert space. Justify the following statements about weak convergence in H.
 - *a*) $x_n \rightarrow x$ weakly if, and only if, $\lim_{n \rightarrow \infty} \langle x_n, z \rangle = \langle x, z \rangle$ for all $z \in H$.
 - b) The weak limit of any orthonormal sequence is 0.
 - c) Let $\{u_i\}_{i\in I}$ be an orthonormal basis. Then $x_n \to x$ weakly if, and only if, $\{x_n\}_{n=1}^{\infty}$ is bounded and $\lim_{n\to\infty} \langle x_n, u_i \rangle = \langle x, u_i \rangle$ for all $i \in I$.
- 6. (Space ℓ^p) Justify the following statement: in the space ℓ^p , with $1 , we have <math>x_n \rightharpoonup x$ if, and only if,
 - *a*) the sequence $\{||x_n||_p\}_{n=1}^{\infty}$ is bounded, and
 - b) for every fixed $j \in \mathbb{N}$, there holds $x_n(j) \to x(j)$ as $n \to \infty$, where $x_n = \{x_n(j)\}_{j=1}^{\infty}$ and $x = \{x(j)\}_{j=1}^{\infty}$.
- 7. Prove that ℓ^1 has the *Schur property*: a sequence in ℓ^1 converges weakly if, and only if, it converges strongly to the same limit.
- 8. (*Pointwise convergence*) If $x_n \in C[a,b]$ $(n \in \mathbb{N})$ and $x_n \rightharpoonup x \in C[a,b]$, show that $\{x_n\}_{n=1}^{\infty}$ is pointwise convergent on [a,b], that is, $\{x_n(t)\}_{n=1}^{\infty}$ converges for every $t \in [a,b]$.
- 9. If $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ are sequences in the same normed space *X*, prove that $x_n \rightharpoonup x$ and $y_n \rightharpoonup y$ imply $x_n + y_n \rightharpoonup x + y$ as well as $\alpha x_n \rightharpoonup \alpha x$, where α is any scalar.
- 10. If $x_n \rightharpoonup x_0$ in a normed space X, show that $x_0 \in \overline{Y}$, where $Y = \text{span} \{x_n : n \in \mathbb{N}\}$.

11. *a*) If M is any subspace of a normed space X, the identity

$$\overline{M} = \bigcap_{f \in M^\perp} \mathscr{N}(f)$$

holds, where \overline{M} denotes the strong closure of M. Use this identity to deduce the Mazur theorem for subspaces, namely that the weak and the strong closures of M coincide.

- *b*) Prove that any closed convex subset *Y* of a normed space *X* contains the limits of all weakly convergent sequences of its elements (that is, *Y* is *weakly sequentially closed*).
- 12. (Weak Cauchy sequences) A weak Cauchy sequence in a real or complex normed space X is a sequence $\{x_n\}_{n=1}^{\infty} \subset X$ such that for every $f \in X'$, the sequence $\{f(x_n)\}_{n=1}^{\infty}$ is Cauchy in \mathbb{R} or \mathbb{C} , respectively; note that then $\lim_{n\to\infty} f(x_n)$ exists.
 - a) Show that weak Cauchy sequences are bounded.
 - *b*) Let *A* be a set in a normed space *X* such that every nonempty subset of *A* contains a weak Cauchy sequence. Show that *A* is bounded.
- 13. (*Weak completeness*) A normed space *X* is said to be *weakly complete* if every weak Cauchy sequence in *X* converges weakly in *X*. Show that reflexive spaces are weakly complete.
- 14. Assume f, f_1, f_2, \ldots, f_n are linear functionals on a vector space X. Establish the equivalence of the following statements:
 - a) $f \in \text{span} \{f_1, f_2, \dots, f_n\}.$
 - b) There exists $C \ge 0$ such that $|f(x)| \le C \max\{|f_i(x)| : 1 \le i \le n\}$ $(x \in X)$.
 - c) f is bounded, bounded above, or bounded below, in $\bigcap_{i=1}^{n} \mathcal{N}(f_i)$.
 - d) $\bigcap_{i=1}^{n} \mathcal{N}(f_i) \subset \mathcal{N}(f).$
- 15. Prove that in finite-dimensional spaces the strong, weak, and weak* topologies coincide.
- 16. Show that the dual of an infinite-dimensional normed space with the weak* topology is of the first category in itself.
- 17. (*Hahn-Banach separation theorem for the weak* topology*) Assume X is a normed space. Let $A \subset X'$ be a nonempty, weakly* closed and convex set, and let $x'_0 \in X' \setminus A$. Prove that there exists $x \in X$ satisfying

$$\sup\{\Re\langle x,a'\rangle:a'\in A\}<\Re\langle x,x'_0\rangle.$$

- 18. (*Hahn-Banach characterization of weak* closure*) Suppose X is a normed space. Let M be a subspace of X', and let $x'_0 \in X' \setminus \overline{M}^{\sigma(X',X)}$. Show that there exists $x \in X$ such that $\langle x, m' \rangle = 0$ for every $m' \in M$, but $\langle x, x'_0 \rangle = 1$.
- 19. Prove that if an operator T on a finite-dimensional space is represented by a matrix T_E , then the adjoint operator T' is represented by the transpose of T_E .

- 20. (*Relation between Hilbert-adjoint and adjoint*) Let H_1 and H_2 be Hilbert spaces, and let $A_i : H'_i \to H_i$ (i = 1, 2) be the corresponding Fréchet-Riesz isometric isomorphisms. Let $T : H_1 \to H_2$ be a bounded linear operator. Show that:
 - a) The Hilbert space adjoint T^* and the Banach space adjoint T' of T are related by $T^* = A_1 T' A_2^{-1}$.
 - b) T' is defined on the dual of the space which contains the range of T, whereas T^* is defined directly on the space which contains the range of T.
 - c) For T' we have

$$(\alpha T)' = \alpha T',$$

but for T^* we have

$$(\alpha T)^* = \overline{\alpha} T^*.$$

- d) In the finite dimensional case, T' is represented by the transpose of the matrix representing T, whereas T^* is represented by the complex conjugate transpose of that matrix.
- 21. (*Total boundedness*) Let *B* be a subset of a metric space *X* and let $\varepsilon > 0$ be given. A set $M_{\varepsilon} \subset X$ is called a ε -net for *B* if for every point $z \in B$ there is a point of M_{ε} at a distance from *z* less than ε . The set *B* is said to be *totally bounded* if for every $\varepsilon > 0$ there is a finite ε -net $M_{\varepsilon} \subset X$ for *B*, where «finite» means that M_{ε} is a finite set (that is, consists of finitely many points). Consequently, total boundedness of *B* means that for every given $\varepsilon > 0$, the set *B* is contained in the union of finitely many open balls of radius ε . Finally, *B* is said to be *relatively compact* if its closure is compact.

Prove that:

- *a*) If *B* is relatively compact, then *B* is totally bounded.
- b) If B is totally bounded, then so is \overline{B} .
- c) If B is totally bounded, then every sequence in B has a Cauchy subsequence.
- d) If B is totally bounded and X is complete, then B is relatively compact.
- e) If *B* is totally bounded, then for every $\varepsilon > 0$ there exists a finite ε -net $M_{\varepsilon} \subset B$.
- f) If B is totally bounded, then B is separable.
- 22. Prove compactness of $T: \ell^2 \to \ell^2$ defined by y = Tx, $x = \{x(n)\}_{n=1}^{\infty}$, $y = \{y(n)\}_{n=1}^{\infty}$, y(n) = x(n)/n $(n \in \mathbb{N})$.
- 23. Let X, Y be Banach spaces and $T: X \to Y$ be a compact linear operator. Suppose that $\{x_n\}_{n=1}^{\infty} \subset X$ is weakly convergent, say $x_n \rightharpoonup x$. Prove that $\{Tx_n\}_{n=1}^{\infty}$ is strongly convergent in Y to the limit y = Tx.
- 24. Let *X* and *Y* be Banach spaces. Prove that the range $\mathscr{R}(T)$ of a compact linear operator $T: X \to Y$ is separable.
- 25. Let *X* be a Banach space and assume $\{\lambda_1, \dots, \lambda_n\}$ are pairwise distinct eigenvalues of an operator $T \in \mathscr{B}(X)$. Assume further that e_j is an eigenvector for λ_j $(1 \le j \le n)$. Show that $\{e_1, \dots, e_n\}$ are linearly independent.

26. Let $T : X \to X$ be a compact linear operator on a Banach space X. For every $\lambda \neq 0$, the null space $\mathcal{N}(T_{\lambda})$ of $T_{\lambda} = T - \lambda I$ is finite dimensional. Prove that actually

$$\dim \mathcal{N}\left(T_{\lambda}^{n}\right) < \infty \quad (n = 0, 1, 2, \ldots)$$

and, moreover,

$$\{0\} = \mathscr{N}\left(T_{\lambda}^{0}\right) \subset \mathscr{N}\left(T_{\lambda}\right) \subset \mathscr{N}\left(T_{\lambda}^{2}\right) \subset \dots$$

27. Let $T \in \mathscr{B}(X)$ be a compact linear operator on a Banach space *X*, and let $\lambda \neq 0$. It is known that the range of $T_{\lambda} = T - \lambda I$ is closed. Prove that, in fact, the range of $T_{\lambda}^n = (T - \lambda I)^n$ is closed for every n = 0, 1, 2, ... Furthermore, show that

$$X = \mathscr{R}(T_{\lambda}^{0}) \supset \mathscr{R}(T_{\lambda}) \supset \mathscr{R}(T_{\lambda}^{2}) \supset \dots$$

- 28. From Exercises 26 and 27 we know that for a compact linear operator *T* on a Banach space *X* and $\lambda \neq 0$ the null spaces $\mathscr{N}(T^n_{\lambda})$ are finite dimensional and satisfy $\mathscr{N}(T^n_{\lambda}) \subset \mathscr{N}(T^{n+1}_{\lambda})$, while the ranges $\mathscr{R}(T^n_{\lambda})$ are closed and satisfy $\mathscr{R}(T^n_{\lambda}) \supset \mathscr{R}(T^{n+1}_{\lambda})$ (n = 0, 1, 2, ...). Prove that from some n = p on, those null spaces are all equal; and from some n = q on, those ranges are all equal, the remaining inclusions being proper. Moreover, assuming that *p* and *q* are the smallest integers with such properties, prove that p = q.
- 29. Let X, T, λ and r = p = q be as in Exercise 28. Show that X can be represented in the form

$$X = \mathscr{N}(T_{\lambda}^{r}) \oplus \mathscr{R}(T_{\lambda}^{r}).$$

30. Consider the linear operator $T: \ell^2 \to \ell^2$ defined by

$$Tx = \left\{0, \frac{x(1)}{1}, \frac{x(2)}{2}, \frac{x(3)}{3}, \ldots\right\},\$$

where $x = \{x(n)\}_{n=1}^{\infty}$. Prove that *T* is compact and $\sigma(T) = \{0\}$, but *T* has no eigenvalues.

- 31. Let $T: \ell^2 \to \ell^2$ be defined by y = Tx, $x = \{x(n)\}_{n=1}^{\infty}$, $y = \{y(n)\}_{n=1}^{\infty}$, $y(n) = \alpha(n)x(n)$ $(n \in \mathbb{N})$, where $\{\alpha(n)\}_{n=1}^{\infty}$ is dense on [0, 1]. Show that T is not compact.
- 32. Let $T: C[0,1] \rightarrow C[0,1]$ be defined by Tx = vx, where v(t) = t ($t \in [0,1]$). Show that T is not compact.