An introduction to the spectral theory of linear operators problem set

IsABEL MARRERO
Departamento de Análisis Matemático
Universidad de La Laguna
imarrero@ull.es

1. Show that:
a) The weak topology of a normed space is a vector space topology.
b) The weak closure of a subspace (resp. convex set) is also a subspace (resp. convex set).
2. In a topological vector space X, a set $A \subset X$ is said to be bounded if it can be completely absorbed by every neighborhood of zero, that is, if to every zero neighorhood V, there corresponds $t>0$ such that $A \subset t V$. Assume X is a normed space.
a) Prove that weak boundedness and norm boundedness fit into this definition.
b) Recalling that weak and norm boundedness are equivalent, show that non-trivial subspaces are (weakly, strongly) unbounded.
c) Prove that weakly open subsets of infinite-dimensional normed spaces are unbounded.
3. Show that the weak topology of infinite-dimensional normed spaces is not metrizable.
4. Prove that in a normed space X we have $x_{n} \rightharpoonup x$ weakly if, and only if,
a) the sequence $\left\{\left\|x_{n}\right\|\right\}_{n=1}^{\infty}$ is bounded, and
b) for every element f of a total subset $M \subset X^{\prime}$, we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(x)$.
5. (Hilbert space) Let $(H,\langle\cdot, \cdot\rangle)$ be a Hilbert space. Justify the following statements about weak convergence in H.
a) $x_{n} \rightharpoonup x$ weakly if, and only if, $\lim _{n \rightarrow \infty}\left\langle x_{n}, z\right\rangle=\langle x, z\rangle$ for all $z \in H$.
b) The weak limit of any orthonormal sequence is 0 .
c) Let $\left\{u_{i}\right\}_{i \in I}$ be an orthonormal basis. Then $x_{n} \rightharpoonup x$ weakly if, and only if, $\left\{x_{n}\right\}_{n=1}^{\infty}$ is bounded and $\lim _{n \rightarrow \infty}\left\langle x_{n}, u_{i}\right\rangle=$ $\left\langle x, u_{i}\right\rangle$ for all $i \in I$.
6. (Space ℓ^{p}) Justify the following statement: in the space ℓ^{p}, with $1<p<\infty$, we have $x_{n} \rightharpoonup x$ if, and only if,
a) the sequence $\left\{\left\|x_{n}\right\|_{p}\right\}_{n=1}^{\infty}$ is bounded, and
$b)$ for every fixed $j \in \mathbb{N}$, there holds $x_{n}(j) \rightarrow x(j)$ as $n \rightarrow \infty$, where $x_{n}=\left\{x_{n}(j)\right\}_{j=1}^{\infty}$ and $x=\{x(j)\}_{j=1}^{\infty}$.
7. Prove that ℓ^{1} has the Schur property: a sequence in ℓ^{1} converges weakly if, and only if, it converges strongly to the same limit.
8. (Pointwise convergence) If $x_{n} \in C[a, b](n \in \mathbb{N})$ and $x_{n} \rightharpoonup x \in C[a, b]$, show that $\left\{x_{n}\right\}_{n=1}^{\infty}$ is pointwise convergent on $[a, b]$, that is, $\left\{x_{n}(t)\right\}_{n=1}^{\infty}$ converges for every $t \in[a, b]$.
9. If $\left\{x_{n}\right\}_{n=1}^{\infty}$ and $\left\{y_{n}\right\}_{n=1}^{\infty}$ are sequences in the same normed space X, prove that $x_{n} \rightharpoonup x$ and $y_{n} \rightharpoonup y$ imply $x_{n}+y_{n} \rightharpoonup x+y$ as well as $\alpha x_{n} \rightharpoonup \alpha x$, where α is any scalar.
10. If $x_{n} \rightharpoonup x_{0}$ in a normed space X, show that $x_{0} \in \bar{Y}$, where $Y=\operatorname{span}\left\{x_{n}: n \in \mathbb{N}\right\}$.
11. a) If M is any subspace of a normed space X, the identity

$$
\bar{M}=\bigcap_{f \in M^{\perp}} \mathscr{N}(f)
$$

holds, where \bar{M} denotes the strong closure of M. Use this identity to deduce the Mazur theorem for subspaces, namely that the weak and the strong closures of M coincide.
b) Prove that any closed convex subset Y of a normed space X contains the limits of all weakly convergent sequences of its elements (that is, Y is weakly sequentially closed).
12. (Weak Cauchy sequences) A weak Cauchy sequence in a real or complex normed space X is a sequence $\left\{x_{n}\right\}_{n=1}^{\infty} \subset X$ such that for every $f \in X^{\prime}$, the sequence $\left\{f\left(x_{n}\right)\right\}_{n=1}^{\infty}$ is Cauchy in \mathbb{R} or \mathbb{C}, respectively; note that then $\lim _{n \rightarrow \infty} f\left(x_{n}\right)$ exists.
a) Show that weak Cauchy sequences are bounded.
b) Let A be a set in a normed space X such that every nonempty subset of A contains a weak Cauchy sequence. Show that A is bounded.
13. (Weak completeness) A normed space X is said to be weakly complete if every weak Cauchy sequence in X converges weakly in X. Show that reflexive spaces are weakly complete.
14. Assume $f, f_{1}, f_{2}, \ldots, f_{n}$ are linear functionals on a vector space X. Establish the equivalence of the following statements:
a) $f \in \operatorname{span}\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$.
b) There exists $C \geq 0$ such that $|f(x)| \leq C \max \left\{\left|f_{i}(x)\right|: 1 \leq i \leq n\right\}(x \in X)$.
c) f is bounded, bounded above, or bounded below, in $\bigcap_{i=1}^{n} \mathscr{N}\left(f_{i}\right)$.
d) $\bigcap_{i=1}^{n} \mathscr{N}\left(f_{i}\right) \subset \mathscr{N}(f)$.
15. Prove that in finite-dimensional spaces the strong, weak, and weak* topologies coincide.
16. Show that the dual of an infinite-dimensional normed space with the weak* topology is of the first category in itself.
17. (Hahn-Banach separation theorem for the weak* topology) Assume X is a normed space. Let $A \subset X^{\prime}$ be a nonempty, weakly* closed and convex set, and let $x_{0}^{\prime} \in X^{\prime} \backslash A$. Prove that there exists $x \in X$ satisfying

$$
\sup \left\{\Re\left\langle x, a^{\prime}\right\rangle: a^{\prime} \in A\right\}<\Re\left\langle x, x_{0}^{\prime}\right\rangle .
$$

18. (Hahn-Banach characterization of weak* closure) Suppose X is a normed space. Let M be a subspace of X^{\prime}, and let $x_{0}^{\prime} \in X^{\prime} \backslash \bar{M}^{\sigma\left(X^{\prime}, X\right)}$. Show that there exists $x \in X$ such that $\left\langle x, m^{\prime}\right\rangle=0$ for every $m^{\prime} \in M$, but $\left\langle x, x_{0}^{\prime}\right\rangle=1$.
19. Prove that if an operator T on a finite-dimensional space is represented by a matrix T_{E}, then the adjoint operator T^{\prime} is represented by the transpose of T_{E}.
20. (Relation between Hilbert-adjoint and adjoint) Let H_{1} and H_{2} be Hilbert spaces, and let $A_{i}: H_{i}^{\prime} \rightarrow H_{i}(i=1,2)$ be the corresponding Fréchet-Riesz isometric isomorphisms. Let $T: H_{1} \rightarrow H_{2}$ be a bounded linear operator. Show that:
a) The Hilbert space adjoint T^{*} and the Banach space adjoint T^{\prime} of T are related by $T^{*}=A_{1} T^{\prime} A_{2}^{-1}$.
b) T^{\prime} is defined on the dual of the space which contains the range of T, whereas T^{*} is defined directly on the space which contains the range of T.
c) For T^{\prime} we have

$$
(\alpha T)^{\prime}=\alpha T^{\prime}
$$

but for T^{*} we have

$$
(\alpha T)^{*}=\bar{\alpha} T^{*} .
$$

d) In the finite dimensional case, T^{\prime} is represented by the transpose of the matrix representing T, whereas T^{*} is represented by the complex conjugate transpose of that matrix.
21. (Total boundedness) Let B be a subset of a metric space X and let $\varepsilon>0$ be given. A set $M_{\varepsilon} \subset X$ is called a ε-net for B if for every point $z \in B$ there is a point of M_{ε} at a distance from z less than ε. The set B is said to be totally bounded if for every $\varepsilon>0$ there is a finite ε-net $M_{\varepsilon} \subset X$ for B, where «finite» means that M_{ε} is a finite set (that is, consists of finitely many points). Consequently, total boundedness of B means that for every given $\varepsilon>0$, the set B is contained in the union of finitely many open balls of radius ε. Finally, B is said to be relatively compact if its closure is compact. Prove that:
a) If B is relatively compact, then B is totally bounded.
b) If B is totally bounded, then so is \bar{B}.
c) If B is totally bounded, then every sequence in B has a Cauchy subsequence.
d) If B is totally bounded and X is complete, then B is relatively compact.
$e)$ If B is totally bounded, then for every $\varepsilon>0$ there exists a finite ε-net $M_{\varepsilon} \subset B$.
$f)$ If B is totally bounded, then B is separable.
22. Prove compactness of $T: \ell^{2} \rightarrow \ell^{2}$ defined by $y=T x, x=\{x(n)\}_{n=1}^{\infty}, y=\{y(n)\}_{n=1}^{\infty}, y(n)=x(n) / n(n \in \mathbb{N})$.
23. Let X, Y be Banach spaces and $T: X \rightarrow Y$ be a compact linear operator. Suppose that $\left\{x_{n}\right\}_{n=1}^{\infty} \subset X$ is weakly convergent, say $x_{n} \rightharpoonup x$. Prove that $\left\{T x_{n}\right\}_{n=1}^{\infty}$ is strongly convergent in Y to the limit $y=T x$.
24. Let X and Y be Banach spaces. Prove that the range $\mathscr{R}(T)$ of a compact linear operator $T: X \rightarrow Y$ is separable.
25. Let X be a Banach space and assume $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ are pairwise distinct eigenvalues of an operator $T \in \mathscr{B}(X)$. Assume further that e_{j} is an eigenvector for $\lambda_{j}(1 \leq j \leq n)$. Show that $\left\{e_{1}, \ldots, e_{n}\right\}$ are linearly independent.
26. Let $T: X \rightarrow X$ be a compact linear operator on a Banach space X. For every $\lambda \neq 0$, the null space $\mathscr{N}\left(T_{\lambda}\right)$ of $T_{\lambda}=T-\lambda I$ is finite dimensional. Prove that actually

$$
\operatorname{dim} \mathscr{N}\left(T_{\lambda}^{n}\right)<\infty \quad(n=0,1,2, \ldots)
$$

and, moreover,

$$
\{0\}=\mathscr{N}\left(T_{\lambda}^{0}\right) \subset \mathscr{N}\left(T_{\lambda}\right) \subset \mathscr{N}\left(T_{\lambda}^{2}\right) \subset \ldots
$$

27. Let $T \in \mathscr{B}(X)$ be a compact linear operator on a Banach space X, and let $\lambda \neq 0$. It is known that the range of $T_{\lambda}=T-\lambda I$ is closed. Prove that, in fact, the range of $T_{\lambda}^{n}=(T-\lambda I)^{n}$ is closed for every $n=0,1,2, \ldots$. Furthermore, show that

$$
X=\mathscr{R}\left(T_{\lambda}^{0}\right) \supset \mathscr{R}\left(T_{\lambda}\right) \supset \mathscr{R}\left(T_{\lambda}^{2}\right) \supset \ldots
$$

28. From Exercises 26 and 27 we know that for a compact linear operator T on a Banach space X and $\lambda \neq 0$ the null spaces $\mathscr{N}\left(T_{\lambda}^{n}\right)$ are finite dimensional and satisfy $\mathscr{N}\left(T_{\lambda}^{n}\right) \subset \mathscr{N}\left(T_{\lambda}^{n+1}\right)$, while the ranges $\mathscr{R}\left(T_{\lambda}^{n}\right)$ are closed and satisfy $\mathscr{R}\left(T_{\lambda}^{n}\right) \supset$ $\mathscr{R}\left(T_{\lambda}^{n+1}\right)(n=0,1,2, \ldots)$. Prove that from some $n=p$ on, those null spaces are all equal; and from some $n=q$ on, those ranges are all equal, the remaining inclusions being proper. Moreover, assuming that p and q are the smallest integers with such properties, prove that $p=q$.
29. Let X, T, λ and $r=p=q$ be as in Exercise 28. Show that X can be represented in the form

$$
X=\mathscr{N}\left(T_{\lambda}^{r}\right) \oplus \mathscr{R}\left(T_{\lambda}^{r}\right)
$$

30. Consider the linear operator $T: \ell^{2} \rightarrow \ell^{2}$ defined by

$$
T x=\left\{0, \frac{x(1)}{1}, \frac{x(2)}{2}, \frac{x(3)}{3}, \ldots\right\}
$$

where $x=\{x(n)\}_{n=1}^{\infty}$. Prove that T is compact and $\sigma(T)=\{0\}$, but T has no eigenvalues.
31. Let $T: \ell^{2} \rightarrow \ell^{2}$ be defined by $y=T x, x=\{x(n)\}_{n=1}^{\infty}, y=\{y(n)\}_{n=1}^{\infty}, y(n)=\alpha(n) x(n)(n \in \mathbb{N})$, where $\{\alpha(n)\}_{n=1}^{\infty}$ is dense on $[0,1]$. Show that T is not compact.
32. Let $T: C[0,1] \rightarrow C[0,1]$ be defined by $T x=v x$, where $v(t)=t(t \in[0,1])$. Show that T is not compact.

