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1. Show that:

a) The weak topology of a normed space is a vector space topology.

b) The weak closure of a subspace (resp. convex set) is also a subspace (resp. convex set).

2. In a topological vector space X , a set A⊂ X is said to be bounded if it can be completely absorbed by every neighborhood

of zero, that is, if to every zero neighorhood V , there corresponds t > 0 such that A⊂ tV . Assume X is a normed space.

a) Prove that weak boundedness and norm boundedness fit into this definition.

b) Recalling that weak and norm boundedness are equivalent, show that non-trivial subspaces are (weakly, strongly)

unbounded.

c) Prove that weakly open subsets of infinite-dimensional normed spaces are unbounded.

3. Show that the weak topology of infinite-dimensional normed spaces is not metrizable.

4. Prove that in a normed space X we have xn ⇀ x weakly if, and only if,

a) the sequence {‖xn‖}∞
n=1 is bounded, and

b) for every element f of a total subset M ⊂ X ′, we have limn→∞ f (xn) = f (x).

5. (Hilbert space) Let (H,〈·, ·〉) be a Hilbert space. Justify the following statements about weak convergence in H.

a) xn ⇀ x weakly if, and only if, limn→∞〈xn,z〉= 〈x,z〉 for all z ∈ H.

b) The weak limit of any orthonormal sequence is 0.

c) Let {ui}i∈I be an orthonormal basis. Then xn ⇀ x weakly if, and only if, {xn}∞
n=1 is bounded and limn→∞〈xn,ui〉 =

〈x,ui〉 for all i ∈ I.

6. (Space `p) Justify the following statement: in the space `p, with 1 < p < ∞, we have xn ⇀ x if, and only if,

a) the sequence {‖xn‖p}∞
n=1 is bounded, and

b) for every fixed j ∈ N, there holds xn( j)→ x( j) as n→ ∞, where xn = {xn( j)}∞

j=1 and x = {x( j)}∞

j=1.

7. Prove that `1 has the Schur property: a sequence in `1 converges weakly if, and only if, it converges strongly to the same

limit.

8. (Pointwise convergence) If xn ∈C[a,b] (n ∈ N) and xn ⇀ x ∈C[a,b], show that {xn}∞

n=1 is pointwise convergent on [a,b],

that is, {xn(t)}∞

n=1 converges for every t ∈ [a,b].

9. If {xn}∞

n=1 and {yn}∞

n=1 are sequences in the same normed space X , prove that xn ⇀ x and yn ⇀ y imply xn +yn ⇀ x+y as

well as αxn ⇀ αx, where α is any scalar.

10. If xn ⇀ x0 in a normed space X , show that x0 ∈ Y , where Y = span{xn : n ∈ N}.
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11. a) If M is any subspace of a normed space X , the identity

M =
⋂

f∈M⊥
N ( f )

holds, where M denotes the strong closure of M. Use this identity to deduce the Mazur theorem for subspaces, namely

that the weak and the strong closures of M coincide.

b) Prove that any closed convex subset Y of a normed space X contains the limits of all weakly convergent sequences of

its elements (that is, Y is weakly sequentially closed).

12. (Weak Cauchy sequences) A weak Cauchy sequence in a real or complex normed space X is a sequence {xn}∞
n=1 ⊂ X such

that for every f ∈ X ′, the sequence { f (xn)}∞
n=1 is Cauchy in R or C, respectively; note that then limn→∞ f (xn) exists.

a) Show that weak Cauchy sequences are bounded.

b) Let A be a set in a normed space X such that every nonempty subset of A contains a weak Cauchy sequence. Show

that A is bounded.

13. (Weak completeness) A normed space X is said to be weakly complete if every weak Cauchy sequence in X converges

weakly in X . Show that reflexive spaces are weakly complete.

14. Assume f , f1, f2, . . . , fn are linear functionals on a vector space X . Establish the equivalence of the following statements:

a) f ∈ span{ f1, f2, . . . , fn}.

b) There exists C ≥ 0 such that | f (x)| ≤C max{| fi(x)| : 1≤ i≤ n} (x ∈ X).

c) f is bounded, bounded above, or bounded below, in
⋂n

i=1 N ( fi).

d)
⋂n

i=1 N ( fi)⊂N ( f ).

15. Prove that in finite-dimensional spaces the strong, weak, and weak* topologies coincide.

16. Show that the dual of an infinite-dimensional normed space with the weak* topology is of the first category in itself.

17. (Hahn-Banach separation theorem for the weak* topology) Assume X is a normed space. Let A ⊂ X ′ be a nonempty,

weakly* closed and convex set, and let x′0 ∈ X ′ \A. Prove that there exists x ∈ X satisfying

sup{ℜ〈x,a′〉 : a′ ∈ A}< ℜ〈x,x′0〉.

18. (Hahn-Banach characterization of weak* closure) Suppose X is a normed space. Let M be a subspace of X ′, and let

x′0 ∈ X ′ \Mσ(X ′,X). Show that there exists x ∈ X such that 〈x,m′〉= 0 for every m′ ∈M, but 〈x,x′0〉= 1.

19. Prove that if an operator T on a finite-dimensional space is represented by a matrix TE , then the adjoint operator T ′ is

represented by the transpose of TE .
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20. (Relation between Hilbert-adjoint and adjoint) Let H1 and H2 be Hilbert spaces, and let Ai : H ′i → Hi (i = 1,2) be the

corresponding Fréchet-Riesz isometric isomorphisms. Let T : H1→ H2 be a bounded linear operator. Show that:

a) The Hilbert space adjoint T ∗ and the Banach space adjoint T ′ of T are related by T ∗ = A1T ′A−1
2 .

b) T ′ is defined on the dual of the space which contains the range of T , whereas T ∗ is defined directly on the space

which contains the range of T .

c) For T ′ we have

(αT )′ = αT ′,

but for T ∗ we have

(αT )∗ = αT ∗.

d) In the finite dimensional case, T ′ is represented by the transpose of the matrix representing T , whereas T ∗ is

represented by the complex conjugate transpose of that matrix.

21. (Total boundedness) Let B be a subset of a metric space X and let ε > 0 be given. A set Mε ⊂ X is called a ε-net for B if

for every point z ∈ B there is a point of Mε at a distance from z less than ε . The set B is said to be totally bounded if for

every ε > 0 there is a finite ε-net Mε ⊂ X for B, where «finite» means that Mε is a finite set (that is, consists of finitely

many points). Consequently, total boundedness of B means that for every given ε > 0, the set B is contained in the union

of finitely many open balls of radius ε . Finally, B is said to be relatively compact if its closure is compact.

Prove that:

a) If B is relatively compact, then B is totally bounded.

b) If B is totally bounded, then so is B.

c) If B is totally bounded, then every sequence in B has a Cauchy subsequence.

d) If B is totally bounded and X is complete, then B is relatively compact.

e) If B is totally bounded, then for every ε > 0 there exists a finite ε-net Mε ⊂ B.

f ) If B is totally bounded, then B is separable.

22. Prove compactness of T : `2→ `2 defined by y = T x, x = {x(n)}∞
n=1, y = {y(n)}∞

n=1, y(n) = x(n)/n (n ∈ N).

23. Let X , Y be Banach spaces and T : X → Y be a compact linear operator. Suppose that {xn}∞
n=1 ⊂ X is weakly convergent,

say xn ⇀ x. Prove that {T xn}∞
n=1 is strongly convergent in Y to the limit y = T x.

24. Let X and Y be Banach spaces. Prove that the range R(T ) of a compact linear operator T : X → Y is separable.

25. Let X be a Banach space and assume {λ1, . . . ,λn} are pairwise distinct eigenvalues of an operator T ∈B(X). Assume

further that e j is an eigenvector for λ j (1≤ j ≤ n). Show that {e1, . . . ,en} are linearly independent.
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26. Let T : X → X be a compact linear operator on a Banach space X . For every λ 6= 0, the null space N (Tλ ) of Tλ = T −λ I

is finite dimensional. Prove that actually

dimN
(
T n

λ

)
< ∞ (n = 0,1,2, . . .)

and, moreover,

{0}= N
(
T 0

λ

)
⊂N (Tλ )⊂N

(
T 2

λ

)
⊂ . . . .

27. Let T ∈B(X) be a compact linear operator on a Banach space X , and let λ 6= 0. It is known that the range of Tλ = T −λ I

is closed. Prove that, in fact, the range of T n
λ
= (T −λ I)n is closed for every n = 0,1,2, . . .. Furthermore, show that

X = R(T 0
λ
)⊃R(Tλ )⊃R(T 2

λ
)⊃ . . . .

28. From Exercises 26 and 27 we know that for a compact linear operator T on a Banach space X and λ 6= 0 the null spaces

N
(
T n

λ

)
are finite dimensional and satisfy N

(
T n

λ

)
⊂N

(
T n+1

λ

)
, while the ranges R(T n

λ
) are closed and satisfy R(T n

λ
)⊃

R(T n+1
λ

) (n = 0,1,2, . . .). Prove that from some n = p on, those null spaces are all equal; and from some n = q on, those

ranges are all equal, the remaining inclusions being proper. Moreover, assuming that p and q are the smallest integers with

such properties, prove that p = q.

29. Let X , T , λ and r = p = q be as in Exercise 28. Show that X can be represented in the form

X = N
(
T r

λ

)
⊕R(T r

λ
).

30. Consider the linear operator T : `2→ `2 defined by

T x =
{

0,
x(1)

1
,

x(2)
2

,
x(3)

3
, . . .

}
,

where x = {x(n)}∞
n=1. Prove that T is compact and σ(T ) = {0}, but T has no eigenvalues.

31. Let T : `2→ `2 be defined by y = T x, x = {x(n)}∞
n=1, y = {y(n)}∞

n=1, y(n) = α(n)x(n) (n ∈N), where {α(n)}∞
n=1 is dense

on [0,1]. Show that T is not compact.

32. Let T : C[0,1]→C[0,1] be defined by T x = vx, where v(t) = t (t ∈ [0,1]). Show that T is not compact.
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