Hahn-Banach theorems and applications problem set

ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es

- 1. Suppose X is a vector space. All sets mentioned below are understood to be subsets of X. Prove the following statements.
 - a) $2A \subset A + A$; it may happen that $2A \neq A + A$.
 - b) A is convex if, and only if, (s+t)A = sA + tA for all positive scalars s and t.
 - c) Every union (and intersection) of balanced sets is balanced.
 - d) Every intersection of convex sets is convex.
 - e) If Γ is a collection of convex sets that is totally ordered by set inclusion, then the union of all members of Γ is convex.
 - f) If A and B are convex, so is A + B.
 - g) If A and B are balanced, so is A + B.
 - h) Parts d), e), and f) hold with subspaces in place of convex sets.
- 2. Let *X*, *Y* be vector spaces and $f : X \to Y$ a linear map. Show that:
 - a) If $A \subset X$ is a subspace (or a convex set, or a balanced set), the same is true of f(A).
 - b) If $B \subset Y$ is a subspace (or a convex set, or a balanced set), the same is true of $f^{-1}(B)$.
- 3. Let *X*, *Y* be normed spaces. Show that:
 - *a*) If $A \subset X$ and $B \subset X$, then $\overline{A} + \overline{B} \subset \overline{A + B}$.
 - b) If Y is a subspace of X, so is \overline{Y} .
 - c) If C is a convex subset of X, so are \overline{C} and $\overset{\circ}{C}$.
 - d) If B is a balanced subset of X, so is \overline{B} ; if also $0 \in B$, then B is balanced.
 - e) If E is a bounded subset of X, so is \overline{E} .
- 4. Prove that every linear functional not identically zero on a normed space is onto and open.
- 5. Let *X* be a finite-dimensional normed space, let *Y* be any normed linear space, and let $T : X \to Y$ be a linear transformation. Prove that *T* is continuous.
- 6. Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be finite-dimensional normed linear spaces, with dim $X = \dim Y$. Show that X and Y are isomorphic as normed spaces.
- 7. Assume *X* is a finite dimensional normed linear space with basis $\{v_1, v_2, \dots, v_n\}$. Prove that *X'* has a basis $\{f_1, f_2, \dots, f_n\}$ such that $f_j(v_k) = \delta_{jk}$ for $1 \le j, k \le n$ so that, in particular, dim *X'* = dim *X*. Here,

$$\boldsymbol{\delta}_{jk} = \begin{cases} 1, & j = k \\ 0, & j \neq k \end{cases}$$

is the Kronecker delta.

- 8. Let *X* be a finite-dimensional normed space.
 - *a*) Show that every linear functional on *X* is continuous.
 - b) Deduce that X and X', as normed spaces, are isomorphic.
- 9. Let $1 \le p < \infty$ and $1 < q \le \infty$ be such that 1/p + 1/q = 1. For every $y = \{y(n)\}_{n=1}^{\infty} \in \ell^q$, let $\Phi y : \ell^p \to \mathbb{K}$ be the linear functional defined by

$$(\Phi y)(x) = \sum_{n=1}^{\infty} x(n)y(n) \quad (x = \{x(n)\}_{n=1}^{\infty} \in \ell^p).$$

Show that $\Phi y \in (\ell^p)'$, with $\|\Phi y\| = \|y\|_q$, and that the map $\Phi : \ell^q \to (\ell^p)'$ sending $y \in \ell^q$ to $\Phi y \in (\ell^p)'$ is an isometric isomorphism. Thus, for $1 \le p < \infty$, the dual of ℓ^p «is» ℓ^q .

10. For every $y = \{y(n)\}_{n=1}^{\infty} \in \ell^1$, let $\Phi y : c_0 \to \mathbb{K}$ be the linear functional defined by

$$(\Phi y)(x) = \sum_{n=1}^{\infty} x(n)y(n) \quad (x = \{x(n)\}_{n=1}^{\infty} \in c_0)$$

Show that $\Phi y \in (c_0)'$, with $\|\Phi y\| = \|y\|_1$, and that the map $\Phi : \ell^1 \to (c_0)'$ sending $y \in \ell^1$ to $\Phi y \in (c_0)'$ is an isometric isomorphism. Thus, the dual of c_0 «is» ℓ^1 .

- 11. *a*) Prove that c_{00} is dense in c_0 , but not in ℓ^{∞} .
 - b) Show that for all $y = \{y(n)\}_{n=1}^{\infty} \in \ell^1$, the map

$$(\Phi y)(x) = \sum_{n=1}^{\infty} x(n)y(n) \quad (x = \{x(n)\}_{n=1}^{\infty} \in \ell^{\infty})$$

defines a continuous linear functional on ℓ^{∞} .

- c) Prove by counterexample that not all $f \in (\ell^{\infty})'$ are of the form Φy for some $y \in \ell^1$.
- 12. Show that the dual of $c \ll t^1$ by constructing explicitly an isometric isomorphism $\Phi: \ell^1 \to c'$.
- 13. Recall that

$$c = \left\{ x = \left\{ x(n) \right\}_{n=1}^{\infty} \in \ell^{\infty} : \lim_{n \to \infty} x(n) \text{ exists} \right\},\$$

and consider the space

$$s = \left\{ x = \left\{ x(n) \right\}_{n=1}^{\infty} \in \ell^{\infty} : \lim_{n \to \infty} x(2n) \text{ and } \lim_{n \to \infty} x(2n+1) \text{ exist} \right\}.$$

Let f, f_1 , f_2 be the linear functionals defined by:

$$\begin{split} f(x) &= \lim_{n \to \infty} x(n) \quad (x = \{x(n)\}_{n=1}^{\infty} \in c), \\ f_1(x) &= \lim_{n \to \infty} x(2n), \quad f_2(x) = \lim_{n \to \infty} x(2n+1) \qquad (x = \{x(n)\}_{n=1}^{\infty} \in s). \end{split}$$

Prove that:

- a) c and s are closed subspaces of ℓ^{∞} , with $c \subset s$;
- b) $f \in c'$ and $f_1, f_2 \in s'$, with $||f|| = ||f_1|| = ||f_2|| = 1$; and
- c) $f_1|_c = f_2|_c = f|_c$, but $f_1|_s \neq f_2|_s$.

Therefore, the equinormic extension provided by the Hahn-Banach theorem needs not be unique.

14. Let *M* be the subspace of ℓ^1 given by

$$M = \left\{ x = \{x(k)\}_{k=1}^{\infty} \in \ell^1 : x(k) = 0 \ (k \ge 2) \right\},\$$

and consider the functionals

$$f(x) = x(1) \quad (x = \{x(k)\}_{k=1}^{\infty} \in M),$$

$$F(x) = \sum_{k=1}^{\infty} x(k), \quad F_n(x) = \sum_{k=1}^{n} x(k) \quad (x = \{x(k)\}_{k=1}^{\infty} \in \ell^1, n \in \mathbb{N}).$$

Show that:

- a) M is closed;
- b) $f \in M'$ and $F, F_n \in (\ell^1)'$ $(n \in \mathbb{N})$, with $||f|| = ||F|| = ||F_n|| = 1$ $(n \in \mathbb{N})$;
- c) $F|_M = F_n|_M = f \ (n \in \mathbb{N}).$

Therefore, there may be an infinity of equinormic extensions as provided by the Hahn-Banach theorem.

15. Endow \mathbb{R}^2 with the norm

$$||x||_1 = |x_1| + |x_2|$$
 $(x = (x_1, x_2) \in \mathbb{R}^2),$

and consider the subspace

$$M = \{x = (x_1, 0) : x_1 \in \mathbb{R}\}$$

along with the functionals:

$$f(x) = x_1$$
 $(x = (x_1, 0) \in M),$
 $F_1(x) = x_1, \quad F_2(x) = x_1 + x_2 \quad (x = (x_1, x_2) \in \mathbb{R}^2).$

Show that:

- a) M is closed;
- b) $f \in M'$ and $F_1, F_2 \in (\mathbb{R}^2)'$, with $||f|| = ||F_1|| = ||F_2|| = 1$;
- c) $F_1|_M = F_2|_M = f$.

Therefore, even in finite-dimensional spaces, the equinormic extension provided by the Hahn-Banach theorem needs not be unique.

- 16. (*Extensions of greater norm always exist*) Assume *f* is a continuous linear functional defined on the closed proper subspace *M* of the normed space *X* over \mathbb{K} (\mathbb{R} or \mathbb{C}). Prove that there are continuous linear extensions *F* of *f* with ||F|| > ||f||.
- 17. (Banach limits) Let $\ell^{\infty} = \ell^{\infty}(\mathbb{R})$. Prove that there exists a functional $\Phi : \ell^{\infty} \to \mathbb{R}$ such that
 - *a*) Φ is linear: $\Phi(x+y) = \Phi x + \Phi y$ and $\Phi(cx) = c \Phi x$ $(x, y \in \ell^{\infty}, c \in \mathbb{R})$.
 - b) Φ is positive: $\Phi x \ge 0$ for every $x \in \ell^{\infty}$ with nonnegative terms.
 - c) Φ is normalized: $\Phi(e) = 1$, where $e = \{e(n)\}_{n=1}^{\infty}$ with e(n) = 1 $(n \in \mathbb{N})$.
 - d) Φ is shift-invariant: $\Phi(Sx) = \Phi x$, where (Sx)(n) = x(n+1) $(n \in \mathbb{N})$.

Further, show that the above properties of the functional Φ imply the following:

- e) Φ has norm one; in particular, $|\Phi x| \le ||x||_{\infty}$ $(x \in \ell^{\infty})$.
- *f*) For any $x \in \ell^{\infty}$:

$$\liminf_{n \to \infty} x(n) \le \Phi x \le \limsup x(n).$$

- g) Φ extends the limit functional defined on the subspace of convergent sequences: $\lim_{n\to\infty} x(n) = c$ implies $\Phi x = c$.
- 18. Suppose X is a normed space. Let A be a nonempty subset of X, and let $\{c_x : x \in A\}$ be a corresponding collection of scalars. Prove that the following are equivalent.
 - a) There is a bounded linear functional f on X such that $f(x) = c_x$ for each x in A.
 - b) There is a nonnegative real number M such that

$$|\alpha_1 c_{x_1} + \dots + \alpha_n c_{x_n}| \leq M \|\alpha_1 x_1 + \dots + \alpha_n x_n\|$$

for each linear combination $\alpha_1 x_1 + \cdots + \alpha_n x_n$ of elements of *A*, that is, for each element of span{*A*}.

Further, show that if *b*) holds then *f* can be chosen in *a*) so that $||f|| \le M$.

19. Define in $\ell^1 = \ell^1(\mathbb{R})$ the two subspaces

$$A = \left\{ x = \{x(n)\}_{n=1}^{\infty} \in \ell^1 : x(2n) = 0 \ (n \in \mathbb{N}) \right\},\$$
$$B = \left\{ x = \{x(n)\}_{n=1}^{\infty} \in \ell^1 : x(2n) = \frac{x(2n-1)}{2^n} \ (n \in \mathbb{N}) \right\}.$$

Let $p = \{p(n)\}_{n=1}^{\infty}$ be the point defined by

$$\begin{cases} p(2n) = \frac{1}{2^n} & (n \in \mathbb{N}), \\ p(2n-1) = 0 & \end{cases}$$

and set C = A + p. Prove that:

- a) The subspaces A and B are closed, with $\overline{A+B} = \ell^1$.
- b) $p \notin A + B$.
- c) B and C are two convex subsets which cannot be separated by a closed hyperplane.

Therefore, it is not true that any two non-intersecting convex sets can be separated by a continuous functional, without further assumptions (such as one of the convex subsets has nonempty interior, or one is closed and the other compact).

- 20. Solve Exercise 19 for the ambient spaces ℓ^p $(1 and <math>c_0$.
- 21. Consider the real linear space $X = c_{00}$ (sequences with compact support), and let *A* denote the subset of *X* formed by all those sequences whose last nonzero term is strictly positive, that is,

$$A = \left\{ \sum_{k=1}^{N} \alpha(k) e_k : \ \alpha(1), \alpha(2), \dots, \alpha(N) \in \mathbb{R}, \ \alpha(N) > 0 \ (N \in \mathbb{N}) \right\},$$

where, as usual, $\{e_k\}_{k=1}^{\infty}$ denotes the set of canonical unitary sequences. Let $B = \{0\}$. Check that:

- a) A, B are disjoint convex subsets of X.
- *b*) Every nonzero linear functional on *X* takes on strictly positive and strictly negative values on *A*. Hence, no nonzero functional on *X* can separate *A* and *B*.
- 22. (Separation of convex sets in finite-dimensional spaces) Let *A* and *B* denote disjoint, nonempty, convex subsets of \mathbb{R}^N . Prove that there exists a linear functional on \mathbb{R}^N which separates *A* and *B*. More precisely, there exist $\alpha_1, \alpha_2, \ldots, \alpha_N \in \mathbb{R}$, and $\gamma \in \mathbb{R}$, such that

$$\sum_{k=1}^N lpha_k a_k \leq \gamma \leq \sum_{k=1}^N lpha_k b_k$$

for any $(a_1, a_2, ..., a_N) \in A$ and $(b_1, b_2, ..., b_N) \in B$.

- 23. Assume A and B are disjoint, nonempty, convex sets in a normed vector space X. Give a direct proof of the following statements.
 - *a*) If *A* is open, then there exist $\Lambda \in X'$ and $\gamma \in \mathbb{R}$ such that $\Re \Lambda a < \gamma \leq \Re \Lambda b$ for every $a \in A$ and every $b \in B$.
 - b) If A is compact and B is closed, then there exist $\Lambda \in X'$ and $\gamma_1, \gamma_2 \in \mathbb{R}$ such that $\Re \Lambda a < \gamma_1 < \gamma_2 < \Re \Lambda b$ for every $a \in A$ and every $b \in B$.

- 24. (*Mazur separation theorem*) Let X be a normed space, N a linear subspace of X, and G a convex open subset of X such that $N \cap G = \emptyset$. Show that there exists a closed hyperplane H of X such that $N \subset H$ and $H \cap G = \emptyset$.
- 25. Suppose *B* is a convex, balanced, closed set in a normed space *X*, and let $x_0 \in X \setminus B$. Prove that there exists $\Lambda \in X'$ such that $|\Lambda x| \le 1$ for all $x \in B$, but $\Lambda x_0 > 1$.
- 26. Let $\{x_i\}_{i=1}^n$ be a linearly independent set of vectors in a normed space *X* and $\{\alpha_i\}_{i=1}^n$ be a set of real numbers. Show that there exists $f \in X'$ such that $f(x_i) = \alpha_i$ for i = 1, ..., n.
- 27. Let *X* be a normed space. Prove that if X' is separable, then so is *X*.
- 28. (*Adjoint operator*) Let X and Y be Banach spaces and $T \in \mathscr{B}(X, Y)$. The adjoint of T is defined as an operator $T' : Y' \to X'$ by

$$(T'g)(x) = g(Tx) \quad (g \in Y', x \in X).$$

Show that $T' \in \mathscr{B}(Y', X')$, with ||T'|| = ||T||.

29. (Dual of a subspace) Let X be a normed space with dual X', M a subspace of X, and

$$M^{\perp} = \{ f \in X' : f(x) = 0 \ (x \in M) \}$$

its annihilator. Prove that M^{\perp} is a closed subspace of X', and that the map $\Phi: X'/M^{\perp} \to M'$ given by

$$\Phi(f + M^{\perp}) = f|_M \quad (f + M^{\perp} \in X'/M^{\perp})$$

is an isometric isomorphism.

30. (*Dual of a quotient space*) Let *M* be a closed subspace of a normed space *X*, and let M^{\perp} denote its annihilator. Consider the normed quotient space *X*/*M* and the quotient canonical projection $\pi : X \to X/M$, defined by $\pi(x) = x + M$ ($x \in X$). Show that the map $\Psi : (X/M)' \to M^{\perp}$ given by

$$\Psi g = g \circ \pi \quad (g \in (X/M)')$$

is an isometric isomorphism.

31. (*Best approximation in dual space*) Let X be a normed space with dual X', M a subspace of X, and M^{\perp} its annihilator. Let $f \in X'$. Prove that

$$\min\{\|f - h\| : h \in M^{\perp}\} = \sup\{|f(m)| : m \in M, \|m\| = 1\}.$$

- 32. (*Closure of a subspace*) Let X be a normed space, M a subspace of X, and $x_0 \in X \setminus \overline{M}$, so that $d(x_0, M) > 0$.
 - *a*) Show that there exists $f \in M^{\perp}$ such that ||f|| = 1 and $f(x_0) = d(x_0, M)$.

b) Deduce that

$$\overline{M} = \bigcap_{f \in M^{\perp}} \mathscr{N}(f).$$

33. (*Dense subspace*, 1) Let *X*, *Y* be normed spaces, and let *M* be a subspace of *X*.

- *a*) Prove that $\overline{M} = X$ if, and only if, $M^{\perp} = \{0\}$.
- b) Let $T \in \mathscr{B}(X,Y)$. Show that T' is injective if, and only if, $\mathscr{R}(T)$ is dense in Y.
- 34. (*Dense subspace*, 2) Let *M* be a subspace of a normed space *X*. The *preannihilator* $^{\perp}N$ of a subspace $N \subset X'$ is defined as

$$^{\perp}N = \{ x \in X : f(x) = 0 \ (f \in N) \}.$$

Show that:

- a) $\overline{M} = \bot (M^{\perp})$.
- b) *M* is dense in *X* if, and only if, $M^{\perp} = \{0\}$.
- 35. Let $(X, \|\cdot\|)$ be a normed space. Associate to each $x \in X$ the linear functional $\hat{x} : X' \to \mathbb{K}$ defined by $\hat{x}(f) = f(x)$. Show that the so-called *canonical embedding* $J : X \to X'' = (X')'$ defined by $Jx = \hat{x}$ is, in fact, a linear isometry from X onto J(X), by proving that:
 - a) \hat{x} is linear.
 - b) $|\hat{x}(f)| \le ||x|| ||f|| (f \in X')$; thus $\hat{x} \in X''$, with $||\hat{x}|| \le ||x||$.
 - c) $\|\widehat{x}\| = \|x\| \ (x \in X).$
- 36. Deduce from Exercise 35 that every normed space admits a completion.
- 37. A normed space *X* is said to be *reflexive* if the canonical embedding *J* is onto. Show that ℓ^p $(1 is reflexive, but <math>\ell^1$ and ℓ^∞ are not. [*Remark:* Note that only Banach spaces can be reflexive, since *X''* is automatically Banach and reflexivity means there is a Banach space isomorphism between *X* and *X''*.]
- 38. Prove that every finite-dimensional normed space is reflexive.
- 39. Show that reflexive spaces are, in a sense, an intermediate class between Hilbert and Banach spaces, by proving the following statements.
 - a) If a normed space is reflexive, then it is a Banach space.
 - b) Every Hilbert space is reflexive.
- 40. Show that a Banach space X is reflexive if, and only if, X' is reflexive.
- 41. Let *X* be a Banach space.

- *a*) Prove that X is reflexive and separable if, and only if, X' is reflexive and separable.
- b) Show by counterexample that X' needs not be separable when X is separable but non-reflexive.

[Hint: Cf. Exercises 27, 37, and 40.]