Basic theory of Hilbert spaces problem set

ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es

1. Assume *X* is a real inner product space. Show that $x, y \in X$ and ||x|| = ||y|| implies

$$\langle x+y, x-y \rangle = 0$$

In the case $X = \mathbb{R}^2$, this is a well-known geometric statement – which one?

- 2. Let X be a real inner product space. Show that if $x, y \in X$ satisfy $||x + y||^2 = ||x||^2 + ||y||^2$, then $x \perp y$. Does this result hold true in complex inner product spaces?
- 3. Let x and y belong to a pre-Hilbert space. Prove the equivalence of the following statements:
 - a) $x \perp y$;
 - b) $||x + \alpha y|| = ||x \alpha y|| \ (\alpha \in \mathbb{K});$
 - c) $||x + \alpha y|| \ge ||x|| \ (\alpha \in \mathbb{K}).$
- 4. Let *X* be an inner product space. Prove the following statements:
 - *a*) If $u, v \in X$ and $\langle x, u \rangle = \langle x, v \rangle$ ($x \in X$), then u = v.
 - b) If $\{x_n\}_{n=1}^{\infty} \subset X, x \in X$ are such that $\lim_{n \to \infty} ||x_n|| = ||x||$ and $\lim_{n \to \infty} \langle x_n, x \rangle = \langle x, x \rangle$, then $\lim_{n \to \infty} x_n = x$.
 - c) If $\{x_n\}_{n=1}^{\infty} \subset X$ and $x = \sum_{n=1}^{\infty} x_n$, then

$$\langle x, y \rangle = \sum_{n=1}^{\infty} \langle x_n, y \rangle \quad (y \in X).$$

5. Let X be an inner product space. Prove the Apollonius identity

$$||z-x||^2 + ||z-y||^2 = \frac{1}{2}||x-y||^2 + 2\left||z-\frac{1}{2}(x+y)||^2$$
 $(x,y,z \in X),$

- a) directly;
- b) using the parallelogram law.
- 6. Let [a,b] be a finite interval.
 - a) Apply the Cauchy-Schwarz inequality to prove that $L^2[a,b] \subset L^1[a,b]$.
 - b) Show by counterexample that this inclusion is strict.
- 7. Prove that all norms in a finite-dimensional linear space are equivalent, although not all of them are induced by an inner product.
- 8. Show that the sup-norm on C[a, b] is not induced by an inner product.
- 9. Prove Theorem 2.15 from the lecture notes: Given an inner product space (X, (·, ·)), there exist a Hilbert space H and an unitary isomorphism T : X → T(X) ⊂ H such that T(X) is dense in H. The space H is unique up to unitary isomorphisms. [*Hint*: Use the fact that every metric space admits a completion. For another proof, see Exercise 34.]

10. Let X_i $(i \in \mathbb{N}, 1 \le i \le k)$ be linear spaces equipped with inner products $\langle \cdot, \cdot \rangle_i$, respectively. The product space $X_1 \times X_2 \times \cdots \times X_k = \prod_{i=1}^k X_i$ is defined by

$$\prod_{i=1}^{k} X_{i} = \{ (x_{1}, x_{2}, \dots, x_{k}) : x_{i} \in \mathbb{N}, \ 1 \leq i \leq k \}.$$

In $\prod_{i=1}^{k} X_i$ we consider coordinatewise addition:

$$(x_1, x_2, \dots, x_k) + (y_1, y_2, \dots, y_k) = (x_1 + y_1, x_2 + y_2, \dots, x_k + y_k)$$

and coordinatewise scalar multiplication:

$$\lambda(x_1, x_2, \dots, x_k) = (\lambda x_1, \lambda x_2, \dots, \lambda x_k).$$

Show that an inner product can be defined in $\prod_{i=1}^{k} X_i$ by setting

$$\langle (x_1, x_2, \ldots, x_k), (y_1, y_2, \ldots, y_k) \rangle = \sum_{i=1}^k \langle x_i, y_i \rangle_i,$$

and that $\prod_{i=1}^{k} X_i$ with this inner product is a Hilbert space if so are X_i $(i \in \mathbb{N}, 1 \le i \le k)$.

11. Let *X* be the pre-Hilbert space consisting of the polynomial x = 0 along with all real polynomials in the variable $t \in [a, b]$ with degree less than or equal to 2, endowed with the scalar product

$$\langle x, y \rangle = \int_{a}^{b} x(t) \overline{y(t)} dt \quad (x, y \in X).$$

- *a*) Show that *X* is complete.
- b) Let $Y = \{x \in X : x(a) = 0\}$. Is Y a subspace of X?
- c) Consider the set of all $x \in X$ of degree 2. Is this set a subspace of X?
- 12. Let

$$M = \left\{ f \in C[0,1] : \int_0^{1/2} f(t) \, dt - \int_{1/2}^1 f(t) \, dt = 1 \right\}.$$

Prove that *M* is a convex closed set of $(C[0,1], \|\cdot\|_{\infty})$ with no elements of minimal norm. Does this fact contradict the minimizing vector theorem?

13. Let

$$M = \left\{ f \in L^1[0,1] : \int_0^1 f(t) \, dt = 1 \right\}.$$

Show that *M* is a convex closed set of $(L^1[0,1], \|\cdot\|_1)$ with an infinity of minimal norm elements. Does this fact contradict the minimizing vector theorem?

14. Let $\{x_n\}_{n=1}^{\infty}$ be an orthogonal sequence in a Hilbert space *H*, satisfying

$$\sum_{n=1}^{\infty} \|x_n\|^2 < \infty.$$

Show that the series $\sum_{n=1}^{\infty} x_n$ converges in *H*. Is this still true if the orthogonality assumption is dropped?

15. Let H be a Hilbert space. Show that

$$||x-z|| = ||x-y|| + ||y-z||$$
 $(x,y,z \in H)$

if, and only if, $y = \alpha x + (1 - \alpha)z$ for some $\alpha \in [0, 1]$.

- 16. Let *H* be a Hilbert space and let *P* and *Q* denote the orthogonal projections on the closed subspaces *M* and *N*, respectively. Show that if $M \perp N$, then P + Q is the orthogonal projection on $M \oplus N$.
- 17. Let *P* and *Q* denote orthogonal projections in a Hilbert space. Assuming PQ = QP, show that P + Q PQ is an orthogonal projection and find its range.
- 18. Let

$$M = \left\{ f \in L^2[0, 2\pi] : \int_0^{2\pi} f(x) \, dx = 0 \right\}.$$

Assuming we are placed at the point $g(x) = 3\cos^2 5x$, what is the length of the shortest path reaching *M*?

19. Let *M* denote a closed convex subset of the Hilbert space *H*, and let $y_0 \in M$, $x \in H$. Prove that

$$||x - y_0|| = \min\{||x - y|| : y \in M\}$$

if, and only if,

$$\Re\langle x - y_0, y - y_0 \rangle \le 0 \quad (y \in M).$$

Here, as usual, $\Re z$ denotes the real part of $z \in \mathbb{C}$.

20. Let H be a Hilbert space, and let M be a closed subspace of H. Show that

$$\min\{\|x-x_0\|: x \in M\} = \max\{|\langle x_0, y \rangle|: y \in M^{\perp}, \|y\| = 1\}.$$

21. Compute

$$\min_{a,b,c} \int_{-1}^{1} |x^3 - a - bx - cx^2|^2 dx$$

and find

$$\max_{g} \int_{-1}^{1} x^3 g(x) \, dx$$

where g is subject to the following conditions:

$$\int_{-1}^{1} g(x) \, dx = \int_{-1}^{1} xg(x) \, dx = \int_{-1}^{1} x^2 g(x) \, dx = 0, \quad \int_{-1}^{1} |g(x)|^2 \, dx = 1.$$

22. Let H be a Hilbert space, and let M be a nonempty subset of H.

- *a*) Prove that *M* is total in *H* if, and only if, $M^{\perp} = \{0\}$.
- b) Assuming M is a subspace, prove that M is dense in H if, and only if, $M^{\perp} = \{0\}$.
- c) Show by counterexample that the subspace assumption in b) cannot be dropped.
- d) Conclude that, in a Hilbert space, every dense set is total, but not every total set is dense.
- 23. Consider

$$M = \left\{ x = \{x(n)\}_{n=1}^{\infty} \in \ell^2 : \sum_{n=1}^{\infty} x(n) = 0 \right\}.$$

Prove the following statements:

- a) M is a subspace of ℓ^2 .
- b) M is dense in ℓ^2 .
- c) $M + M^{\perp} \neq \ell^2$. Does this fact contradict the orthogonal projection theorem?
- 24. a) Find the Fourier series (with respect to the usual trigonometric orthonormal system) for the function

$$f(x) = |x| \quad (x \in [-\pi, \pi]).$$

b) Find the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n^4}$.

25. a) Find the Fourier series (with respect to the usual trigonometric orthonormal system) for the function

$$f(x) = \begin{cases} 0, & -\pi \le x < 0\\ \cos x, & 0 \le x < \pi. \end{cases}$$

b) Find the sum of the series $\sum_{n=1}^{\infty} \frac{n^2}{(4n^2-1)^2}$.

- 26. Let $\{e_n\}_{n=1}^{\infty}$ be an orthonormal basis for $L^2[0,1]$. Construct from it an orthonormal basis for $L^2(I)$, where *I* is any finite interval.
- 27. *a)* (*Gram-Schmidt orthonormalization process*) Let $\{x_n : n = 1, 2, 3, ...\}$ be a linearly independent set of vectors in a Hilbert space *H*. Put $u_1 = x_1 / ||x_1||$. Having obtained $u_1, ..., u_{n-1}$, define

$$v_n = x_n - \sum_{i=1}^{n-1} \langle x_n, u_i \rangle u_i, \quad u_n = \frac{v_n}{\|v_n\|}$$

Show that this construction yields an orthonormal set $\{u_n\}_{n=1}^{\infty}$ such that $\{x_1, \ldots, x_N\}$ and $\{u_1, \ldots, u_N\}$ have the same span for all $N \in \mathbb{N}$.

- *b*) A metric space is *separable* if it contains a countable dense subset. Use the above ortonormalization process to prove the existence of a maximal orthonormal set in separable Hilbert spaces without appealing to transfinite induction.
- 28. Show that the functions

$$x_0(t) = \frac{1}{2\pi}, \quad x_{2n-1}(t) = \frac{1}{\pi}\cos(nt), \quad x_{2n}(t) = \frac{1}{\pi}\sin(nt) \quad (n \in \mathbb{N})$$

form an orthogonal sequence in $L^2[-\pi,\pi]$. Is this sequence orthonormal?

29. Consider in $L^{2}[0,1]$ the sequence of *Rademacher functions*:

$$e_n(t) = \sum_{j=0}^{2^n-1} (-1)^j \chi_{j\frac{j}{2^n}, \frac{j+1}{2^n}}(t) \quad (n \in \mathbb{N}).$$

- a) Draw the graphs of e_1 , e_2 , e_3 and e_4 .
- b) Show that $\{e_n\}_{n=1}^{\infty}$ is an orthonormal sequence in $L^2[0,1]$.
- c) Show that $\{e_n\}_{n=1}^{\infty}$ is not an orthonormal basis.
- 30. Consider in $L^{2}[0,1]$ the sequence of *Haar functions*:

$$h_1(t) = \begin{cases} 1, & 0 \le t < 1 \\ 0, & \text{otherwise} \end{cases}$$

and

$$h_{2^m+k}(t) = \begin{cases} \sqrt{2^m}, & \frac{k-1}{2^m} \le t < \frac{2k-1}{2^{m+1}} \\ -\sqrt{2^m}, & \frac{2k-1}{2^{m+1}} \le t < \frac{k}{2^m} \\ 0, & \text{otherwise}, \end{cases}$$

where $k = 1, 2, ..., 2^m, m \in \mathbb{N}_0$.

- a) Sketch the graphs of h_1, h_2, \ldots, h_8 .
- b) Show that $\{h_n\}_{n=1}^{\infty}$ is an orthonormal sequence in $L^2[0,1]$.
- c) Show that $\{h_n\}_{n=1}^{\infty}$ is an orthonormal basis in $L^2[0,1]$.
- 31. *a*) Let $f \neq 0$ be a linear functional on a vector space *E*, and let *N* denote the kernel of *f*. Prove that there exists a $y \in E$ with the following property: every $x \in E$ can be uniquely represented as $x = \lambda y + z$, where $z \in N$ and λ is an appropriate scalar.

- b) Deduce that two linear functionals with the same kernel are scalar multiples of each other.
- 32. Let *X* be a pre-Hilbert space. Prove the following:
 - a) The map $T: X \to X'$ defined by $(Ty)(x) = \langle x, y \rangle$ $(x, y \in X)$ is conjugate linear and isometric.
 - b) T is onto if, and only if, X is Hilbert.
- 33. Show that the dual X' of a pre-Hilbert space X is a Hilbert space.
- 34. *a*) Given a pre-Hilbert space *X*, denote by X'' = (X')' its *bidual*. Show that the map $\Phi : X \to X''$ defined by $(\Phi x)f = f(x)$ $(x \in X, f \in X')$ is a unitary isomorphism from *X* onto $\mathscr{R}(\Phi) \subset X''$, with $\mathscr{R}(\Phi)$ dense in *X''*.
 - b) In the above notation, prove that if X is a Hilbert space then Φ is onto (in other words, every Hilbert space is *reflexive*). Conversely, show that if Φ is onto then X is a Hilbert space.
 - c) Deduce from part *a*) that every pre-Hilbert space admits a *completion*. That is, given a pre-Hilbert space X, there is a Hilbert space H and a unitary isomorphism $T: X \to \mathscr{R}(T) \subset H$ such that $\mathscr{R}(T)$ is dense in H. Prove that H is unique except for unitary isomorphisms. [Cf. Exercise 9.]
- 35. Show that if *X* is a pre-Hilbert space with the property that $M^{\perp\perp} = M$ for every closed subspace *M*, then *X* is a Hilbert space. [*Hint*: Use Exercise 32 and review the proof of the Fréchet-Riesz representation theorem.]
- 36. Let f be a linear functional on a Hilbert space, and let N denote the kernel of f.
 - a) Prove that if f is not continuous, then N is a dense subspace.
 - b) Deduce that f is continuous if, and only if, N is a closed subspace.
- 37. Using the Fréchet-Riesz representation theorem, show that if *M* is a complete subspace of a pre-Hilbert space *X*, then $X = M \oplus M^{\perp}$.
- 38. Let *H* be a Hilbert space and $f \neq 0$ a continuous linear functional on *H*, with kernel *N*. Prove that N^{\perp} is a one-dimensional subspace of *H*.
- 39. Show that the dual of ℓ^2 , as a real vector space, is ℓ^2 .
- 40. Find the Fréchet-Riesz representation of the functionals defined on ℓ^2 by:
 - *a*) f(x) = x(3) + x(4);

b)
$$g(x) = \sum_{n=1}^{\infty} x(n)$$
.

41. Let

$$\begin{aligned} \varphi : \quad \ell^2 & \longrightarrow \quad \mathbb{C} \\ v & \longmapsto \quad \varphi(v) = \sum_{n=1}^{\infty} \frac{v(n)}{2^{n-1}} \end{aligned}$$

Prove that φ is a continuous linear functional on ℓ^2 , find its Fréchet-Riesz representation, and compute $\|\varphi\|$.

42. Let

$$\varphi: L^2(\mathbb{R}) \longrightarrow \mathbb{C}$$

 $f \longmapsto \varphi(f) = \int_{-1}^1 3x f(x) \, dx.$

Prove that φ is a continuous linear functional on $L^2(\mathbb{R})$, find its Fréchet-Riesz representation, and compute $\|\varphi\|$.

- 43. Use the Fréchet-Riesz representation theorem to define an inner product on the dual of a Hilbert space, and prove that the norm associated with such a product coincides with the standard operator norm.
- 44. Assume *E*, *F* are linear spaces and $\varphi : E \times E \to F$ is a bilinear map. Show that

$$\varphi(x+y,x+y) - \varphi(x-y,x-y) + i[\varphi(x+iy,x+iy) - \varphi(x-iy,x-iy)] = 0 \quad (x,y \in E).$$

- 45. Let E, F, G be normed spaces and $\varphi: E \times F \to G$ a bilinear map. Prove the equivalence of the following statements:
 - a) φ is bounded.
 - b) If $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} y_n = y$, then $\lim_{n\to\infty} \varphi(x_n, y_n) = \varphi(x, y)$.
 - c) If $\lim_{n\to\infty} x_n = 0$ and $\lim_{n\to\infty} y_n = 0$, then $\lim_{n\to\infty} \varphi(x_n, y_n) = 0$.
- 46. Let *E*, *F* be normed spaces and let *B* be a Banach space. Suppose that *M* is a dense subspace of *E*, *N* is a dense subspace of *F*, and $\varphi : M \times N \to B$ is a bounded bilinear map. Prove that there exists a unique bounded bilinear map $\phi : E \times F \to B$ such that $\phi(x,y) = \varphi(x,y)$ ($x \in M$, $y \in N$).
- 47. Let *E*, *F*, *G* be normed spaces and $\varphi : E \times F \to G$ be a bilinear map, continuous in each variable. Prove that if *E* or *F* are Banach spaces, then φ is bounded.
- 48. Let *E*, *F* be linear spaces and $\varphi : E \times E \to F$ a bilinear or sesquilinear map. Prove that φ satisfies the «parallelogram law»:

$$\varphi(x+y,x+y) + \varphi(x-y,x-y) = 2\varphi(x,x) + 2\varphi(y,y) \quad (x,y \in E).$$

- 49. Assume *X* is a pre-Hilbert space, *G* is a normed space, and $\varphi : X \times X \to G$ is a bounded bilinear map with the property that $\varphi(y,x) = \varphi(x,y) \ (x,y \in X)$. Show that $\|\varphi\| = \sup\{\|\varphi(x,x)\| : x \in X, \|x\| \le 1\}$.
- 50. Prove that the inner product of a pre-Hilbert space X is a bounded sesquilinear form on X, and find its norm.
- 51. A *seminorm* on the linear space *E* is a map $p: E \to \mathbb{R}$ which satisfies the following axioms:
 - (i) $p(x) \ge 0 \ (x \in E);$
 - (ii) $p(\lambda x) = |\lambda| p(x) \ (\lambda \in \mathbb{K}, x \in E);$
 - (iii) $p(x+y) \le p(x) + p(y) \ (x, y \in E).$

Assume that φ is a positive sesquilinear form on a linear space *E*. Show that $p(x) = \varphi(x, x)^{1/2}$ ($x \in E$) defines a seminorm on *E*.

- 52. Let *X*, *Y* be pre-Hilbert spaces, and let X^* , Y^* be their complex conjugate pre-Hilbert spaces. Prove that the following are equivalent:
 - a) $T: X \to Y$ is linear conjugate, and $\langle Tx, Ty \rangle = \langle y, x \rangle$ $(x, y \in X)$.
 - b) $T: X \to Y^*$ is linear, and $[Tx, Ty] = \langle x, y \rangle \ (x, y \in X)$.
 - c) $T: X^* \to Y$ is linear, and $\langle Tx, Ty \rangle = [x, y] \ (x, y \in X^*).$

[*Remark*: If X = Y, a surjective operator T satisfying a) is called a *conjugation* of the pre-Hilbert space X. For instance, $(Tx)(n) = \overline{x(n)} \ (x \in \ell^2, n \in \mathbb{N})$ defines a conjugation of the Hilbert space ℓ^2 .]

- 53. Let *H* be a Hilbert space. Show that:
 - *a*) The operator $U : H \to (H')^*$ which maps $x \in H$ to the continuous linear functional Ux = x' defined by x on H is a linear isomorphism.
 - b) Endowed with the inner product $[x', y'] = \langle y', x' \rangle$ $(x', y' \in (H')^*)$, $(H')^*$ is a Hilbert space.
 - c) The map $U: H \to (H')^*$ is a unitary isomorphism.

[*Hint*: Cf. Exercise 33. The operator $T: H \to H'$ defined by Tx = x' ($x \in H$) satisfies condition *a*) in Exercise 52.]

- 54. Let *X*, *Y* be pre-Hilbert spaces, and let the map $T: X \to Y$ be such that $\langle Tu, Tv \rangle = \langle v, u \rangle$ $(u, v \in X)$. Prove the following:
 - a) If $\mathscr{R}(T)$ is a subspace of Y, then T is conjugate linear.
 - b) In particular, if X = Y and T is onto, then T is a conjugation of X (cf. Exercise 52).
 - c) If X = H is a Hilbert space and $\mathscr{R}(T)$ is a total subset of Y, then T is onto.
- 55. Let *S* be a bounded linear operator on a Hilbert space, such that $S^*S = 0$. Show that S = 0.
- 56. Prove that any two linear operators S, T on a Hilbert space satisfy the «polarization identity»:

$$4T^*S = (S+T)^*(S+T) - (S-T)^*(S-T) + i[(S+iT)^*(S+iT) - (S-iT)^*(S-iT)].$$

- 57. Let *H* be a Hilbert space. Prove that a linear operator *P* on *H* is idempotent and self-adjoint if, and only if, *P* is the orthogonal projection onto $\mathscr{R}(P)$, that is, $H = \mathscr{N}(P) \oplus \mathscr{R}(P)$, with $\mathscr{N}(P) \perp \mathscr{R}(P)$.
- 58. Let *H* be a Hilbert space, *M* a closed subspace of *H* and *T* a bounded linear operator on *H*. The subspace *M* is said to be *invariant* under *T* provided that $Tx \in M$ for all $x \in M$. Moreover, *M* is said to *reduce T* whenever *M* and M^{\perp} are invariant under *T*. Let *P* be the orthogonal projection onto *M*.

- a) Prove that M is invariant under T if, and only if, PTP = TP.
- b) Prove the equivalence of the following statements:
 - i) M reduces T.
 - *ii*) PT = TP.
 - *iii*) *M* is invariant under *T* and T^* .
- 59. Let $\{e_k\}_{k=1}^{\infty}$ be an orthonormal basis in a Hilbert space *H*, and let $\{\mu_k\}_{k=1}^{\infty}$ be a bounded sequence of complex numbers, with $M = \sup\{|\mu_k| : k \in \mathbb{N}\}$.
 - *a*) Show that there exist a unique bounded linear operator *T* on *H* with $Te_k = \mu_k e_k$ ($k \in \mathbb{N}$).
 - b) Show that ||T|| = M.
 - c) Find T^* and compute its norm.
 - d) Prove that T is *normal*, that is, $TT^* = T^*T$.
 - *e*) What property must satisfy the sequence $\{\mu_k\}_{k=1}^{\infty}$ for *T* to be self-adjoint?
 - f) Assuming that $|\mu_k| > 1$ $(k \in \mathbb{N})$, prove that there exists T^{-1} as a bounded linear operator on H.