Basic theory of Hilbert spaces problem set

IsABEL MARRERO
Departamento de Análisis Matemático
Universidad de La Laguna
imarrero@ull.es

1. Assume X is a real inner product space. Show that $x, y \in X$ and $\|x\|=\|y\|$ implies

$$
\langle x+y, x-y\rangle=0 .
$$

In the case $X=\mathbb{R}^{2}$, this is a well-known geometric statement - which one?
2. Let X be a real inner product space. Show that if $x, y \in X$ satisfy $\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}$, then $x \perp y$. Does this result hold true in complex inner product spaces?
3. Let x and y belong to a pre-Hilbert space. Prove the equivalence of the following statements:
a) $x \perp y$;
b) $\|x+\alpha y\|=\|x-\alpha y\|(\alpha \in \mathbb{K})$;
c) $\|x+\alpha y\| \geq\|x\|(\alpha \in \mathbb{K})$.
4. Let X be an inner product space. Prove the following statements:
a) If $u, v \in X$ and $\langle x, u\rangle=\langle x, v\rangle(x \in X)$, then $u=v$.
b) If $\left\{x_{n}\right\}_{n=1}^{\infty} \subset X, x \in X$ are such that $\lim _{n \rightarrow \infty}\left\|x_{n}\right\|=\|x\|$ and $\lim _{n \rightarrow \infty}\left\langle x_{n}, x\right\rangle=\langle x, x\rangle$, then $\lim _{n \rightarrow \infty} x_{n}=x$.
c) If $\left\{x_{n}\right\}_{n=1}^{\infty} \subset X$ and $x=\sum_{n=1}^{\infty} x_{n}$, then

$$
\langle x, y\rangle=\sum_{n=1}^{\infty}\left\langle x_{n}, y\right\rangle \quad(y \in X)
$$

5. Let X be an inner product space. Prove the Apollonius identity

$$
\|z-x\|^{2}+\|z-y\|^{2}=\frac{1}{2}\|x-y\|^{2}+2\left\|z-\frac{1}{2}(x+y)\right\|^{2} \quad(x, y, z \in X)
$$

a) directly;
b) using the parallelogram law.
6. Let $[a, b]$ be a finite interval.
a) Apply the Cauchy-Schwarz inequality to prove that $L^{2}[a, b] \subset L^{1}[a, b]$.
b) Show by counterexample that this inclusion is strict.
7. Prove that all norms in a finite-dimensional linear space are equivalent, although not all of them are induced by an inner product.
8. Show that the sup-norm on $C[a, b]$ is not induced by an inner product.
9. Prove Theorem 2.15 from the lecture notes: Given an inner product space $(X,\langle\cdot, \cdot\rangle)$, there exist a Hilbert space H and an unitary isomorphism $T: X \rightarrow T(X) \subset H$ such that $T(X)$ is dense in H. The space H is unique up to unitary isomorphisms. [Hint: Use the fact that every metric space admits a completion. For another proof, see Exercise 34.]
10. Let $X_{i}(i \in \mathbb{N}, 1 \leq i \leq k)$ be linear spaces equipped with inner products $\langle\cdot, \cdot\rangle_{i}$, respectively. The product space $X_{1} \times X_{2} \times$ $\cdots \times X_{k}=\prod_{i=1}^{k} X_{i}$ is defined by

$$
\prod_{i=1}^{k} X_{i}=\left\{\left(x_{1}, x_{2}, \ldots, x_{k}\right): x_{i} \in X_{i}, i \in \mathbb{N}, 1 \leq i \leq k\right\}
$$

In $\prod_{i=1}^{k} X_{i}$ we consider coordinatewise addition:

$$
\left(x_{1}, x_{2}, \ldots, x_{k}\right)+\left(y_{1}, y_{2}, \ldots, y_{k}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{k}+y_{k}\right)
$$

and coordinatewise scalar multiplication:

$$
\lambda\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\left(\lambda x_{1}, \lambda x_{2}, \ldots, \lambda x_{k}\right)
$$

Show that an inner product can be defined in $\prod_{i=1}^{k} X_{i}$ by setting

$$
\left\langle\left(x_{1}, x_{2}, \ldots, x_{k}\right),\left(y_{1}, y_{2}, \ldots, y_{k}\right)\right\rangle=\sum_{i=1}^{k}\left\langle x_{i}, y_{i}\right\rangle_{i}
$$

and that $\prod_{i=1}^{k} X_{i}$ with this inner product is a Hilbert space if so are $X_{i}(i \in \mathbb{N}, 1 \leq i \leq k)$.
11. Let X be the pre-Hilbert space consisting of the polynomial $x=0$ along with all real polynomials in the variable $t \in[a, b]$ with degree less than or equal to 2 , endowed with the scalar product

$$
\langle x, y\rangle=\int_{a}^{b} x(t) \overline{y(t)} d t \quad(x, y \in X)
$$

a) Show that X is complete.
b) Let $Y=\{x \in X: x(a)=0\}$. Is Y a subspace of X ?
c) Consider the set of all $x \in X$ of degree 2. Is this set a subspace of X ?
12. Let

$$
M=\left\{f \in C[0,1]: \int_{0}^{1 / 2} f(t) d t-\int_{1 / 2}^{1} f(t) d t=1\right\}
$$

Prove that M is a convex closed set of $\left(C[0,1],\|\cdot\|_{\infty}\right)$ with no elements of minimal norm. Does this fact contradict the minimizing vector theorem?
13. Let

$$
M=\left\{f \in L^{1}[0,1]: \int_{0}^{1} f(t) d t=1\right\}
$$

Show that M is a convex closed set of $\left(L^{1}[0,1],\|\cdot\|_{1}\right)$ with an infinity of minimal norm elements. Does this fact contradict the minimizing vector theorem?
14. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be an orthogonal sequence in a Hilbert space H, satisfying

$$
\sum_{n=1}^{\infty}\left\|x_{n}\right\|^{2}<\infty
$$

Show that the series $\sum_{n=1}^{\infty} x_{n}$ converges in H. Is this still true if the orthogonality assumption is dropped?
15. Let H be a Hilbert space. Show that

$$
\|x-z\|=\|x-y\|+\|y-z\| \quad(x, y, z \in H)
$$

if, and only if, $y=\alpha x+(1-\alpha) z$ for some $\alpha \in[0,1]$.
16. Let H be a Hilbert space and let P and Q denote the orthogonal projections on the closed subspaces M and N, respectively. Show that if $M \perp N$, then $P+Q$ is the orthogonal projection on $M \oplus N$.
17. Let P and Q denote orthogonal projections in a Hilbert space. Assuming $P Q=Q P$, show that $P+Q-P Q$ is an orthogonal projection and find its range.
18. Let

$$
M=\left\{f \in L^{2}[0,2 \pi]: \int_{0}^{2 \pi} f(x) d x=0\right\}
$$

Assuming we are placed at the point $g(x)=3 \cos ^{2} 5 x$, what is the length of the shortest path reaching M ?
19. Let M denote a closed convex subset of the Hilbert space H, and let $y_{0} \in M, x \in H$. Prove that

$$
\left\|x-y_{0}\right\|=\min \{\|x-y\|: y \in M\}
$$

if, and only if,

$$
\mathfrak{R}\left\langle x-y_{0}, y-y_{0}\right\rangle \leq 0 \quad(y \in M)
$$

Here, as usual, $\mathfrak{R z}$ denotes the real part of $z \in \mathbb{C}$.
20. Let H be a Hilbert space, and let M be a closed subspace of H. Show that

$$
\min \left\{\left\|x-x_{0}\right\|: x \in M\right\}=\max \left\{\left|\left\langle x_{0}, y\right\rangle\right|: y \in M^{\perp},\|y\|=1\right\}
$$

21. Compute

$$
\min _{a, b, c} \int_{-1}^{1}\left|x^{3}-a-b x-c x^{2}\right|^{2} d x
$$

and find

$$
\max _{g} \int_{-1}^{1} x^{3} g(x) d x
$$

where g is subject to the following conditions:

$$
\int_{-1}^{1} g(x) d x=\int_{-1}^{1} x g(x) d x=\int_{-1}^{1} x^{2} g(x) d x=0, \quad \int_{-1}^{1}|g(x)|^{2} d x=1
$$

22. Let H be a Hilbert space, and let M be a nonempty subset of H.
a) Prove that M is total in H if, and only if, $M^{\perp}=\{0\}$.
b) Assuming M is a subspace, prove that M is dense in H if, and only if, $M^{\perp}=\{0\}$.
c) Show by counterexample that the subspace assumption in b) cannot be dropped.
d) Conclude that, in a Hilbert space, every dense set is total, but not every total set is dense.
23. Consider

$$
M=\left\{x=\{x(n)\}_{n=1}^{\infty} \in \ell^{2}: \sum_{n=1}^{\infty} x(n)=0\right\}
$$

Prove the following statements:
a) M is a subspace of ℓ^{2}.
b) M is dense in ℓ^{2}.
c) $M+M^{\perp} \neq \ell^{2}$. Does this fact contradict the orthogonal projection theorem?
24. a) Find the Fourier series (with respect to the usual trigonometric orthonormal system) for the function

$$
f(x)=|x| \quad(x \in[-\pi, \pi]) .
$$

b) Find the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n^{4}}$.
25. a) Find the Fourier series (with respect to the usual trigonometric orthonormal system) for the function

$$
f(x)= \begin{cases}0, & -\pi \leq x<0 \\ \cos x, & 0 \leq x<\pi\end{cases}
$$

b) Find the sum of the series $\sum_{n=1}^{\infty} \frac{n^{2}}{\left(4 n^{2}-1\right)^{2}}$.
26. Let $\left\{e_{n}\right\}_{n=1}^{\infty}$ be an orthonormal basis for $L^{2}[0,1]$. Construct from it an orthonormal basis for $L^{2}(I)$, where I is any finite interval.
27. a) (Gram-Schmidt orthonormalization process) Let $\left\{x_{n}: n=1,2,3, \ldots\right\}$ be a linearly independent set of vectors in a Hilbert space H. Put $u_{1}=x_{1} /\left\|x_{1}\right\|$. Having obtained u_{1}, \ldots, u_{n-1}, define

$$
v_{n}=x_{n}-\sum_{i=1}^{n-1}\left\langle x_{n}, u_{i}\right\rangle u_{i}, \quad u_{n}=\frac{v_{n}}{\left\|v_{n}\right\|} .
$$

Show that this construction yields an orthonormal set $\left\{u_{n}\right\}_{n=1}^{\infty}$ such that $\left\{x_{1}, \ldots, x_{N}\right\}$ and $\left\{u_{1}, \ldots, u_{N}\right\}$ have the same span for all $N \in \mathbb{N}$.
b) A metric space is separable if it contains a countable dense subset. Use the above ortonormalization process to prove the existence of a maximal orthonormal set in separable Hilbert spaces without appealing to transfinite induction.
28. Show that the functions

$$
x_{0}(t)=\frac{1}{2 \pi}, \quad x_{2 n-1}(t)=\frac{1}{\pi} \cos (n t), \quad x_{2 n}(t)=\frac{1}{\pi} \operatorname{sen}(n t) \quad(n \in \mathbb{N})
$$

form an orthogonal sequence in $L^{2}[-\pi, \pi]$. Is this sequence orthonormal?
29. Consider in $L^{2}[0,1]$ the sequence of Rademacher functions:

$$
e_{n}(t)=\sum_{j=0}^{2^{n}-1}(-1)^{j} \chi_{\sqrt{2^{n}}, \frac{j+1}{2^{n}}[}(t) \quad(n \in \mathbb{N})
$$

a) Draw the graphs of e_{1}, e_{2}, e_{3} and e_{4}.
b) Show that $\left\{e_{n}\right\}_{n=1}^{\infty}$ is an orthonormal sequence in $L^{2}[0,1]$.
c) Show that $\left\{e_{n}\right\}_{n=1}^{\infty}$ is not an orthonormal basis.
30. Consider in $L^{2}[0,1]$ the sequence of Haar functions:

$$
h_{1}(t)= \begin{cases}1, & 0 \leq t<1 \\ 0, & \text { otherwise }\end{cases}
$$

and

$$
h_{2^{m}+k}(t)= \begin{cases}\sqrt{2^{m}}, & \frac{k-1}{2^{m}} \leq t<\frac{2 k-1}{2^{m+1}} \\ -\sqrt{2^{m}}, & \frac{2 k-1}{2^{m+1}} \leq t<\frac{k}{2^{m}} \\ 0, & \text { otherwise },\end{cases}
$$

where $k=1,2, \ldots, 2^{m}, m \in \mathbb{N}_{0}$.
a) Sketch the graphs of $h_{1}, h_{2}, \ldots, h_{8}$.
b) Show that $\left\{h_{n}\right\}_{n=1}^{\infty}$ is an orthonormal sequence in $L^{2}[0,1]$.
c) Show that $\left\{h_{n}\right\}_{n=1}^{\infty}$ is an orthonormal basis in $L^{2}[0,1]$.
31. a) Let $f \neq 0$ be a linear functional on a vector space E, and let N denote the kernel of f. Prove that there exists a $y \in E$ with the following property: every $x \in E$ can be uniquely represented as $x=\lambda y+z$, where $z \in N$ and λ is an appropriate scalar.
b) Deduce that two linear functionals with the same kernel are scalar multiples of each other.
32. Let X be a pre-Hilbert space. Prove the following:
a) The map $T: X \rightarrow X^{\prime}$ defined by $(T y)(x)=\langle x, y\rangle(x, y \in X)$ is conjugate linear and isometric.
b) T is onto if, and only if, X is Hilbert.
33. Show that the dual X^{\prime} of a pre-Hilbert space X is a Hilbert space.
34. a) Given a pre-Hilbert space X, denote by $X^{\prime \prime}=\left(X^{\prime}\right)^{\prime}$ its bidual. Show that the map $\Phi: X \rightarrow X^{\prime \prime}$ defined by $(\Phi x) f=f(x)$ $\left(x \in X, f \in X^{\prime}\right)$ is a unitary isomorphism from X onto $\mathscr{R}(\Phi) \subset X^{\prime \prime}$, with $\mathscr{R}(\Phi)$ dense in $X^{\prime \prime}$.
b) In the above notation, prove that if X is a Hilbert space then Φ is onto (in other words, every Hilbert space is reflexive). Conversely, show that if Φ is onto then X is a Hilbert space.
c) Deduce from part a) that every pre-Hilbert space admits a completion. That is, given a pre-Hilbert space X, there is a Hilbert space H and a unitary isomorphism $T: X \rightarrow \mathscr{R}(T) \subset H$ such that $\mathscr{R}(T)$ is dense in H. Prove that H is unique except for unitary isomorphisms. [Cf. Exercise 9.]
35. Show that if X is a pre-Hilbert space with the property that $M^{\perp \perp}=M$ for every closed subspace M, then X is a Hilbert space. [Hint: Use Exercise 32 and review the proof of the Fréchet-Riesz representation theorem.]
36. Let f be a linear functional on a Hilbert space, and let N denote the kernel of f.
a) Prove that if f is not continuous, then N is a dense subspace.
b) Deduce that f is continuous if, and only if, N is a closed subspace.
37. Using the Fréchet-Riesz representation theorem, show that if M is a complete subspace of a pre-Hilbert space X, then $X=M \oplus M^{\perp}$.
38. Let H be a Hilbert space and $f \neq 0$ a continuous linear functional on H, with kernel N. Prove that N^{\perp} is a one-dimensional subspace of H.
39. Show that the dual of ℓ^{2}, as a real vector space, is ℓ^{2}.
40. Find the Fréchet-Riesz representation of the functionals defined on ℓ^{2} by:
a) $f(x)=x(3)+x(4)$;
b) $g(x)=\sum_{n=1}^{\infty} x(n)$.
41. Let

$$
\begin{aligned}
\varphi: \ell^{2} & \longrightarrow \mathbb{C} \\
v & \longmapsto \varphi(v)=\sum_{n=1}^{\infty} \frac{v(n)}{2^{n-1}} .
\end{aligned}
$$

Prove that φ is a continuous linear functional on ℓ^{2}, find its Fréchet-Riesz representation, and compute $\|\varphi\|$.
42. Let

$$
\begin{aligned}
\varphi: \quad L^{2}(\mathbb{R}) & \longrightarrow \mathbb{C} \\
f & \longmapsto \varphi(f)=\int_{-1}^{1} 3 x f(x) d x .
\end{aligned}
$$

Prove that φ is a continuous linear functional on $L^{2}(\mathbb{R})$, find its Fréchet-Riesz representation, and compute $\|\varphi\|$.
43. Use the Fréchet-Riesz representation theorem to define an inner product on the dual of a Hilbert space, and prove that the norm associated with such a product coincides with the standard operator norm.
44. Assume E, F are linear spaces and $\varphi: E \times E \rightarrow F$ is a bilinear map. Show that

$$
\varphi(x+y, x+y)-\varphi(x-y, x-y)+i[\varphi(x+i y, x+i y)-\varphi(x-i y, x-i y)]=0 \quad(x, y \in E) .
$$

45. Let E, F, G be normed spaces and $\varphi: E \times F \rightarrow G$ a bilinear map. Prove the equivalence of the following statements:
a) φ is bounded.
b) If $\lim _{n \rightarrow \infty} x_{n}=x$ and $\lim _{n \rightarrow \infty} y_{n}=y$, then $\lim _{n \rightarrow \infty} \varphi\left(x_{n}, y_{n}\right)=\varphi(x, y)$.
c) If $\lim _{n \rightarrow \infty} x_{n}=0$ and $\lim _{n \rightarrow \infty} y_{n}=0$, then $\lim _{n \rightarrow \infty} \varphi\left(x_{n}, y_{n}\right)=0$.
46. Let E, F be normed spaces and let B be a Banach space. Suppose that M is a dense subspace of E, N is a dense subspace of F, and $\varphi: M \times N \rightarrow B$ is a bounded bilinear map. Prove that there exists a unique bounded bilinear map $\phi: E \times F \rightarrow B$ such that $\phi(x, y)=\varphi(x, y)(x \in M, y \in N)$.
47. Let E, F, G be normed spaces and $\varphi: E \times F \rightarrow G$ be a bilinear map, continuous in each variable. Prove that if E or F are Banach spaces, then φ is bounded.
48. Let E, F be linear spaces and $\varphi: E \times E \rightarrow F$ a bilinear or sesquilinear map. Prove that φ satisfies the «parallelogram law»:

$$
\varphi(x+y, x+y)+\varphi(x-y, x-y)=2 \varphi(x, x)+2 \varphi(y, y) \quad(x, y \in E) .
$$

49. Assume X is a pre-Hilbert space, G is a normed space, and $\varphi: X \times X \rightarrow G$ is a bounded bilinear map with the property that $\varphi(y, x)=\varphi(x, y)(x, y \in X)$. Show that $\|\varphi\|=\sup \{\|\varphi(x, x)\|: x \in X,\|x\| \leq 1\}$.
50. Prove that the inner product of a pre-Hilbert space X is a bounded sesquilinear form on X, and find its norm.
51. A seminorm on the linear space E is a map $p: E \rightarrow \mathbb{R}$ which satisfies the following axioms:
(i) $p(x) \geq 0(x \in E)$;
(ii) $p(\lambda x)=|\lambda| p(x)(\lambda \in \mathbb{K}, x \in E)$;
(iii) $p(x+y) \leq p(x)+p(y)(x, y \in E)$.

Assume that φ is a positive sesquilinear form on a linear space E. Show that $p(x)=\varphi(x, x)^{1 / 2}(x \in E)$ defines a seminorm on E.
52. Let X, Y be pre-Hilbert spaces, and let X^{*}, Y^{*} be their complex conjugate pre-Hilbert spaces. Prove that the following are equivalent:
a) $T: X \rightarrow Y$ is linear conjugate, and $\langle T x, T y\rangle=\langle y, x\rangle(x, y \in X)$.
b) $T: X \rightarrow Y^{*}$ is linear, and $[T x, T y]=\langle x, y\rangle(x, y \in X)$.
c) $T: X^{*} \rightarrow Y$ is linear, and $\langle T x, T y\rangle=[x, y]\left(x, y \in X^{*}\right)$.
[Remark: If $X=Y$, a surjective operator T satisfiying a) is called a conjugation of the pre-Hilbert space X. For instance, $(T x)(n)=\overline{x(n)}\left(x \in \ell^{2}, n \in \mathbb{N}\right)$ defines a conjugation of the Hilbert space ℓ^{2}.]
53. Let H be a Hilbert space. Show that:
a) The operator $U: H \rightarrow\left(H^{\prime}\right)^{*}$ which maps $x \in H$ to the continuous linear functional $U x=x^{\prime}$ defined by x on H is a linear isomorphism.
b) Endowed with the inner product $\left[x^{\prime}, y^{\prime}\right]=\left\langle y^{\prime}, x^{\prime}\right\rangle\left(x^{\prime}, y^{\prime} \in\left(H^{\prime}\right)^{*}\right),\left(H^{\prime}\right)^{*}$ is a Hilbert space.
c) The map $U: H \rightarrow\left(H^{\prime}\right)^{*}$ is a unitary isomorphism.
[Hint: Cf. Exercise 33. The operator $T: H \rightarrow H^{\prime}$ defined by $T x=x^{\prime}(x \in H)$ satisfies condition a) in Exercise 52.]
54. Let X, Y be pre-Hilbert spaces, and let the map $T: X \rightarrow Y$ be such that $\langle T u, T v\rangle=\langle v, u\rangle(u, v \in X)$. Prove the following:
a) If $\mathscr{R}(T)$ is a subspace of Y, then T is conjugate linear.
b) In particular, if $X=Y$ and T is onto, then T is a conjugation of X (cf. Exercise 52).
c) If $X=H$ is a Hilbert space and $\mathscr{R}(T)$ is a total subset of Y, then T is onto.
55. Let S be a bounded linear operator on a Hilbert space, such that $S^{*} S=0$. Show that $S=0$.
56. Prove that any two linear operators S, T on a Hilbert space satisfy the «polarization identity»:

$$
4 T^{*} S=(S+T)^{*}(S+T)-(S-T)^{*}(S-T)+i\left[(S+i T)^{*}(S+i T)-(S-i T)^{*}(S-i T)\right] .
$$

57. Let H be a Hilbert space. Prove that a linear operator P on H is idempotent and self-adjoint if, and only if, P is the orthogonal projection onto $\mathscr{R}(P)$, that is, $H=\mathscr{N}(P) \oplus \mathscr{R}(P)$, with $\mathscr{N}(P) \perp \mathscr{R}(P)$.
58. Let H be a Hilbert space, M a closed subspace of H and T a bounded linear operator on H. The subspace M is said to be invariant under T provided that $T x \in M$ for all $x \in M$. Moreover, M is said to reduce T whenever M and M^{\perp} are invariant under T. Let P be the orthogonal projection onto M.
a) Prove that M is invariant under T if, and only if, $P T P=T P$.
b) Prove the equivalence of the following statements:
i) M reduces T.
ii) $P T=T P$.
iii) M is invariant under T and T^{*}.
59. Let $\left\{e_{k}\right\}_{k=1}^{\infty}$ be an orthonormal basis in a Hilbert space H, and let $\left\{\mu_{k}\right\}_{k=1}^{\infty}$ be a bounded sequence of complex numbers, with $M=\sup \left\{\left|\mu_{k}\right|: k \in \mathbb{N}\right\}$.
a) Show that there exist a unique bounded linear operator T on H with $T e_{k}=\mu_{k} e_{k}(k \in \mathbb{N})$.
b) Show that $\|T\|=M$.
c) Find T^{*} and compute its norm.
d) Prove that T is normal, that is, $T T^{*}=T^{*} T$.
$e)$ What property must satisfy the sequence $\left\{\mu_{k}\right\}_{k=1}^{\infty}$ for T to be self-adjoint?
f) Assuming that $\left|\mu_{k}\right|>1(k \in \mathbb{N})$, prove that there exists T^{-1} as a bounded linear operator on H.
