

DETERMINACIÓN DE LA ACTIVIDAD ACETILCOLINESTERASA (AChE) EN EL CEREBRO Y MÚSCULO ESQUELÉTICO DE PECES. EFECTOS DE CONTAMINANTES AMBIENTALES. EVALUACIÓN

- 1. Preparar el tampón de homogeneización:
 - Es una disolución acuosa de TRIS/HCl 0.1 M, Tritón 0.1 %. Esta disolución tiene que estar a pH 8. Preparar 50 mL.
 - Disponemos de las siguientes disoluciones stocks: TRIS 1M y Tritón 100%.

Soluciones:

- Preparar el material y disoluciones stocks.

- Hacer cálculos:

TRIS TRIS 0.1M x 50 mL = TRIS 1 M x V; V = 5 mL

Tritón Tritón $0.1 \% \times 50 \text{ mL} = \text{Tritón } 100 \% \times \text{V}$; $\text{V} = 50 \text{ }\mu\text{L}$

- Poner las cantidades adecuadas de los reactivos en un vaso de precipitado y cantidad de agua (disolvente) aproximada al volumen final.

 Ajustar el pH: el TRIS es básico (pH de la disolución alrededor de 9.5) y hay que ajustarlo a pH 8 con HCl, usando un pHmetro previamente calibrado.

- Llevarlo al volumen exacto (50 mL) en un matraz aforado.

- Trasvasarlo al recipiente adecuado para guardar o para utilizar en el momento y etiquetar.

2. Preparar el tampón de reacción:

- Es una disolución acuosa de TRIS 25 mM, CaCl₂ 1 mM. Esta disolución tiene que estar a pH 7.6. Preparar 100 mL.
- Disponemos de las siguientes disoluciones stocks: TRIS 1M y CaCl₂ 100 mM

Soluciones:

- Preparar el material y disoluciones stocks.
- Hacer cálculos.

TRIS \rightarrow TRIS 25 mM x 100 mL = TRIS 1000 mM x V; V = 2.5 mL

 $CaCl_2 \longrightarrow CaCl_2 1mM \times 100 mL = CaCl_2 100 mM \times V ; V = 1 mL$

- Poner las cantidades adecuadas de los reactivos en un vaso de precipitado y cantidad de agua (disolvente) aproximada al volumen final.
- Ajustar el pH: el TRIS es básico (pH de la disolución alrededor de 9.5) y hay que ajustarlo a pH 7.6 con HCl, usando un pHmetro previamente calibrado.
- Llevarlo al volumen exacto (100 mL) en un matraz aforado.
- Trasvasarlo al recipiente adecuado para guardar o para utilizar en el momento y etiquetar.



3. Hemos incubado cerebro de barriguda (*Parablennius parvicornis*) con diferentes concentraciones de Cu (CuSO₄) obteniéndose los siguientes datos al medir la actividad de la AChE durante un periodo de tiempo, a 410 nm:

Tiempo	Absorbancia según concentración del contaminante			
	Cu 0 mM	Cu 0,1 mM	Cu 1 mM	
0,00	0,4455	0,6061	0,3975	
0,33	0,4909	0,6472	0,4277	
0,67	0,5343	0,6886	0,4541	
1,00	0,5760	0,7280	0,4779	
1,33	0,6182	0,7690	0,5016	
1,67	0,6614	0,8090	0,5227	

- Representa gráficamente la respuesta y di cuál es la actividad enzimática en cada caso.
- Señala el porcentaje de inhibición enzimática que genera cada concentración de contaminante.

Soluciones:

actividad enzimática (U Abs/min)

Cu 0,1 mM \longrightarrow 0,1215 Cu 0 mM \longrightarrow 0,1287 Cu 1 mM \longrightarrow 0,0746

porcentaje de inhibición enzimática (%)

Cu 0 mM	\longrightarrow	0,00
Cu 0,1 mM		5,59
Cu 1 mM	\longrightarrow	42,04

4. Al incubar cerebro de barriguda con diferentes contaminantes a la misma concentración se han obtenido los siguientes datos al medir la actividad de la AChE durante un periodo de tiempo, a 410 nm:

Tiempo (min)	Absorbancia					
	Hg 0 mM	Hg 1 mM	Cu 0 mM	Cu 1 mM	Tri 0 mM	Tri 1 mM
0,00	0,4588	0,2579	0,4455	0,3975	0,7204	0,3613
0,33	0,4979	0,2616	0,4909	0,4277	0,7544	0,3621
0,67	0,5359	0,2783	0,5343	0,4541	0,7871	0,3626
1,00	0,5747	0,3025	0,576	0,4779	0,8206	0,364
1,33	0,612	0,3280	0,6182	0,5016	0,8535	0,3646
1,67	0,6509	0,3543	0,6614	0,5227	0,8859	0,3664

- Comenta la sensibilidad de la AChE frente a los diferentes contaminantes: HgCl₂, CuSO₄ y Trichlorfon.

Soluciones:

- Se calcula las actividades enzimáticas y a partir de ellas, los porcentajes de inhibición:

	actividad enzimática (U Abs/min)			porcentaje de	inhibición enzimática (%)
Hg 0 mM	→	0,1149	\longrightarrow	0,00	
Hg 1 mM	→	0,0604	→	47,43	
Cu 0 mM	→	0,1287	\longrightarrow	0,00	
Cu 1 mM	→	0,0746		42,04	
Tri 0 mM		0,0992	\longrightarrow	0,00	
Tri 1 mM	\longrightarrow	0,0029	\longrightarrow	97,08	

- El Trichlorfon es mucho más potente, seguido del HgCl₂ y del CuSO₄.

