

Tema 2: Potabilización de aguas

Tecnologías de Tratamiento y de Gestión de las Aguas Oliver Díaz López Elisabet Segredo Morales Enrique González Cabrera

ÍNDICE

- 1. Fuentes de Agua y Consideraciones de Calidad
- 2. Visión global de unidad de potabilización (ETAP)
- 3. Sistemas de captación
- 4. Transporte y almacenamiento

AGUA DE LLUVIA

Análisis químico

- o La evaporación del agua introduce una elevada purificación de la misma
- El agua de lluvia se ve afectada por los contaminantes del aire ya sea de origen natural o antropogénico
 - Compuestos orgánicos volátiles
 - Ácidos procedentes de la combustión como son el sulfúrico y el nítrico
 - Polvo y partículas que disuelven minerales como el Na o el Ca.

Usos

- Usos no potables como regadío de jardines. (autoconsumo)
- Captación de pequeñas cantidades
- Requiere de filtración

RÍOS Y ESCORRENTÍAS

Composición química

Origen Natural:

- Ciclo Hidrogeoquímico
- Reacciones de hidrólisis y ácido-base

$$2NaAlSi_3O_8 + 2H_2CO_3 + 9H_2O \rightleftharpoons Al_2Si_2O_5(OH)_4 + 2Na^+ + 2HCO_{33}^- + 4H_4SiO_4$$

Na-Plagiocasa Kaolinita

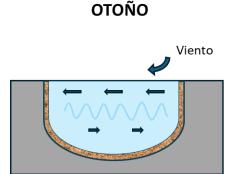
Origen Antropogénico:

- Alta influencia en ríos largos con descargas procedentes de la agricultura y áreas urbanas
- Incremento en las concentraciones de iones cloruro, sulfato y sodio
- Incremento considerable de la carga orgánica en las aguas de ríos
- Fenómenos de eutrofización por vertidos de nutrientes
- Presencia de contaminantes como fármacos, pesticidas, etc.

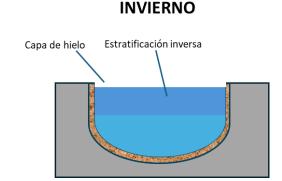
LAGOS Y EMBALSES

Calidad del agua

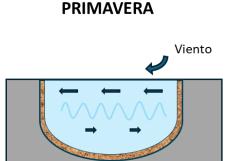
Influencia de la estacionalidad


VERANO Viento Epilimneon Metalimneon

Epilmneon:


Hipolimneon

Capa externa, Caliente y hay perdidas de nutrientes **Hipolimneon**


Baja concentración de O_2 , condiciones reductoras se enriquece en Manganeso (II) y Hierro (II)

Inversión térmicaMezcla del lago o embalse

Capa de hielo
Agua más fría en la superficie
Capa profunda
A poca distancia de la superficie

Inversión térmica Mezcla del lago o embalse

AGUAS SUBTERRÁNEAS

Calidad del agua

Depende de la mineralogía del terreno y del ciclo hidrogeoquímico del agua Presentan baja turbidez, temperatura y composición química estable

Aguas subterráneas procedentes de suelos

Con contenido en granito, feldespatos y micas

- Baja concentración de cationes básicos
- Baja alcalinidad
- Baja dureza
- Baja carga iónica

Con contenido en carbonatos y calizas

- Alta concentración de cationes básicos
- Alta alcalinidad
- Alta dureza
- Alta carga iónica

Contenido en Nitratos

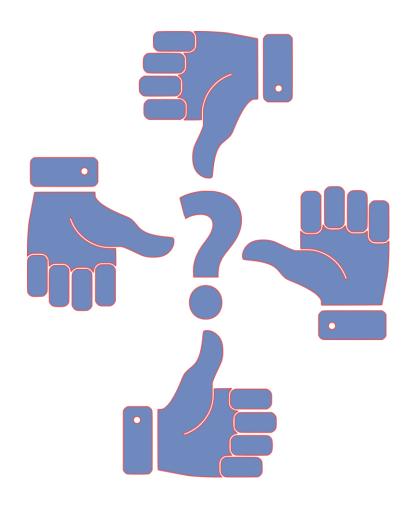
Origen antropogénico: derivado de exceso de fertilización en la agricultura

Reacciones Redox

o En el suelo tienen lugar reacciones de oxidación reducción que afectan al contenido en Fe, Mn, As y S

AGUAS SUPERFICIALES VS SUBTERRÁNEAS

Característica	Agua superficial	Agua subterránea
Temperatura	Variación estacional	Relativamente constante
Turbidez, SS	Nivel variable	Bajo o nulo
Color	Debido a SS	Depende de sales disueltas
Contenido Mineral	Variable	Constante
Fe y Mn	No tiene presencia salvo en lagos con estratificación	Presencia frecuente
CO ₂	Nulo	Presencia frecuente
H ₂ S	Nulo	Presencia frecuente
Nitratos	Niveles bajos	Presencia frecuente
Sílice	Niveles bajos	Presencia frecuente
Organismos	Bacterias, virus, algas	Escasa frecuencia



SELECCIÓN DE LA FUENTE DE AGUA

Criterios

- o Demanda de agua
- Clima
- o Geografía
- o Geología
- Disponibilidad
- Rendimiento
- Coste
- Factores sociales y políticos
- o Calidad del agua

PARÁMETROS GENERALES SOBRE LA CALIDAD DEL AGUA

Depende del origen del agua se deben tener en cuenta diferentes parámetros, no obstante, de manera general, los más importante a la hora de analizar la mejor línea de tratamiento y su idoneidad como agua potable son:

рН

- Parámetro que afecta de manera considerable a la química del agua y al rendimiento de los procesos
- Debe ser monitorizado en línea y controlado en el proceso
- Afecta de manera notable a la corrosión

Alcalinidad

- El contenido en bicarbonatos influye notablemente en la alcalinidad del agua
- Factor importante durante la coagulación y la selección de los métodos anti-corrosión

Dureza

Elevados valores de dureza generan condiciones incrustantes

Turbidez

o Parámetro para medir el contenido particulado del agua, su contenido condiciona la línea de tratamiento

Sólidos disueltos totales (TDS)

 Mide el contenido inorgánico de la muestra, condiciona la línea de tratamiento incluyendo procesos de desalación

PARÁMETROS GENERALES SOBRE LA CALIDAD DEL AGUA

Contenido orgánico

- Marcará las necesidades de desinfección
- o Altos contenidos requieren procesos de coagulación o oxidación del agua
- Se puede medir mediante el TOC, DQO y DBO

Oxígeno disuelto

Regula los procesos de oxidación y reducción

Otros parámetros

o En casos de contaminación específica es necesario analizar otros parámetros

OBJETIVOS Y TRATAMIENTOS MÍMINOS

RD 3/2023

Establece

- Si la turbidez es mayor a 1 NTU es necesario como mínimo una filtración por lecho de arena antes de desinfectarla
- El agua debe ser desinfectada
- Los subproductos de desinfección deben ser los menores posibles
- Los procesos de tratamiento no pueden generar sustancias o propiedades que contaminen o degraden la calidad del agua

Los objetivos

Alcanzar

- Los criterios de calidad fijados en la normativa vigente
- Asegurar la seguridad sanitaria

Línea de tratamiento

Depende del tipo de agua a potabilizar y de la fuente de agua bruta

Contaminantes Inorgánicos

LEYENDA: X=Tecnología apropiada; XO= Tecnología apropiada combinada con otros procesos; MTD="Mejor Tecnología Disponible"

	Aireación y Stripping	Coagulación, Sedimentación DAF, Filtración	Oxidación química y desinfección	NF	Ósmosis Inversa	EDR	IX	Adsorción
Antimonio		MTD		Х	MTD	Х		X
Arsénico		MTD		Χ	MTD	X	MTD	MTD
Bario					MTD	MTD	MTD	
Berilio		MTD		Χ	MTD	X	MTD	MTD
Cadmio		MTD		X	MTD	X	MTD	
Cromo		MTD		Χ	MTD	X	MTD	
Fluoruro					MTD	X	X	MTD
Mercurio		MTD			MTD	X	X	MTD
Nitrato				X	MTD	MTD	MTD	

Contaminantes Orgánicos

LEYENDA: X=Tecnología apropiada; XO= Tecnología apropiada combinada con otros procesos; MTD="Mejor Tecnología Disponible"

	Aireación y Stripping	Coagulación, Sedimentación DAF, Filtración	NF	Ósmosis Inversa	EDR	IX	Adsorción
Volátiles	MTD						MTD
Sintéticos			Х	X			MTD
Pesticidas			Χ	X			MTD

Sustancias Radiactivas

	Aireación y Stripping	Coagulación, Sedimentación DAF, Filtración	Oxidación química y desinfección	NF	Ósmosis Inversa	EDR	IX	Adsorción
Radón				Х	MTD	MTD		
Uranio		MTD		X	MTD	X	MTD	X

Contaminantes Indicadores

LEYENDA: X=Tecnología apropiada; XO= Tecnología apropiada combinada con otros procesos; MTD="Mejor Tecnología Disponible"

	Aireación y Stripping	Coagulación, Sedimentación DAF, Filtración	Oxidación química y desinfección	NF	Ósmosis Inversa	EDR	IX	Adsorción
Dureza				Х	Х	Х	Χ	
Hierro		XO					Χ	
Manganeso		XO					Χ	X
STD					X	X		
Cloruros					X	X		
Sulfatos				X	X	X		
Zinc					X	X	Χ	
Color		X	Х	X	X			X
Sabor y Olor	Х		Х					X

Partículas y Microorganismos

LEYENDA: X=Tecnología apropiada; XO= Tecnología apropiada combinada con otros procesos; MTD="Mejor Tecnología Disponible"

	Aireación y Stripping	Coagulación, Sedimentación DAF, Filtración	Oxidación química y desinfección	NF	Ósmosis Inversa	EDR	IX	Adsorción
Partículas		MTD						
TOC	х	MTD	Х	X	X			MTD
Patógenos		X	MTD					
Algas		MTD	Х					

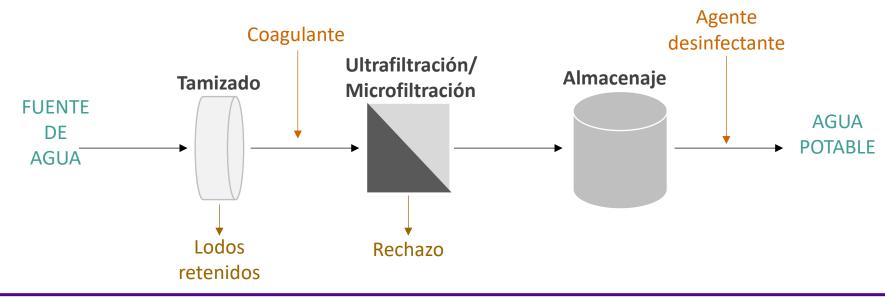
La información de la tablas son guías generales, ya que la mejor selección del proceso depende:

- Tipo de agua
- Requerimientos de calidad
- Espacio disponible
- Costes de inversión
- Costes de operación

EJEMPLOS DE LÍNEAS DE TRATAMIENTOS

Fuente de Agua con elevada Calidad

Características


- No tiene presencia de hierro o magnesio
- Baja turbidez
- Bajo contenido orgánico (TOC)
- Sin presencia de algas

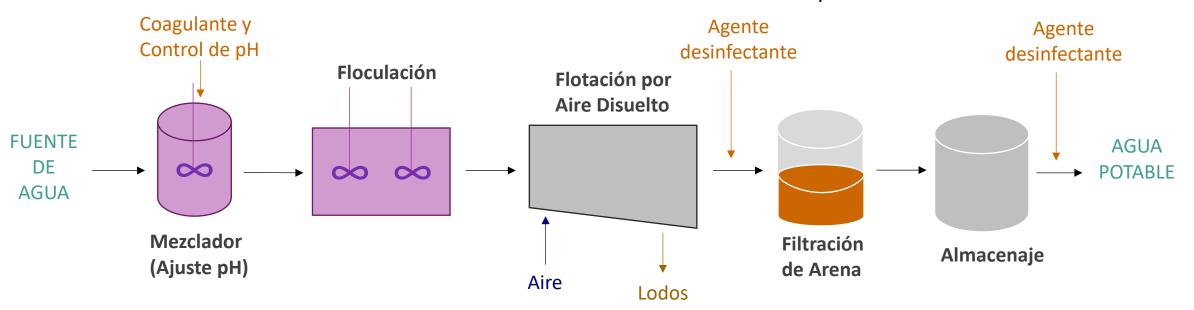
Proceso

 Se puede optar por un proceso de filtración simple:

Coagulación + floculación + filtros de arena

- Se incluye una etapa de filtración con membranas para facilitar la eliminación de patógenos
- Se debe incluir en la etapa final una desinfección

EJEMPLOS DE LÍNEAS DE TRATAMIENTOS


Fuente de Agua con Algas, Color y TOC

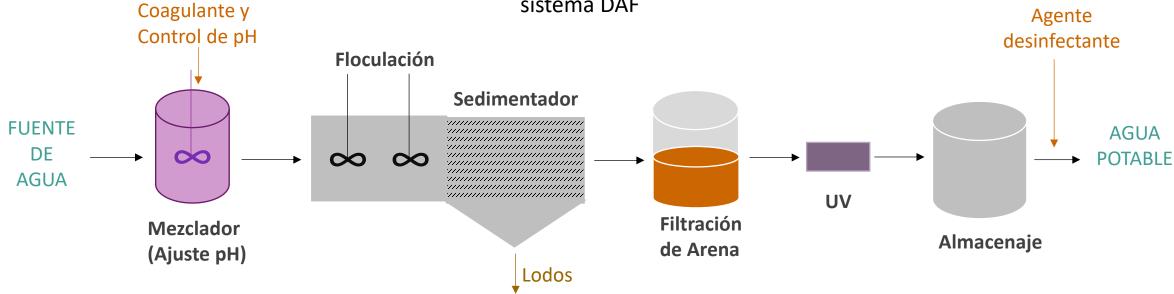
Características

- Baja turbidez causada por contaminantes inorgánicos
- Niveles altos de Algas
- Valores apreciables de color y TOC
- Valores considerables de patógenos

Proceso

- Color, TOC y algas se puede eliminar:
- Coagulación + floculación + Flotación por Aire disuelto
- La filtración por lechos de arena actúa como proceso de seguridad en la eliminación de sólidos
 - Las algas podrían producir un impacto negativo
 - Se inhibe el proceso mediante cloración

EJEMPLOS DE LÍNEAS DE TRATAMIENTOS


Agua superficial con Baja o Moderada Dureza

Características

- No requiere eliminar dureza
- Moderada turbidez debido a constituyentes inorgánicos
- Bajo contenido orgánico y color
- Valores moderados de patógenos

Proceso

- Un sedimentador de platos inclinados sería la mejor opción por bajo coste y necesidades de espacio
- Si el ajuste del pH genera condiciones corrosivas debe ser ajustado antes del almacenaje
- La desinfección puede ser cloración o ultravioleta
- Si la turbidez es muy baja el sedimentador se sustituye por un sistema DAF

CAPTACION DE AGUA

Definición

Se entiende por captación el punto o los puntos de origen de las aguas para su abastecimiento, así como las obras de diferente naturaleza que deben realizarse para su recogida

SISTEMAS DE CAPTACIÓN

Superficiales

Subterránea

Agua de Iluvia

Ríos

Lagos y embalses

Manantiales

Pozos

Sondeos

Galerías

CAPTACIÓN DE AGUA DE LLUVIA

Generalidades

- Recoger grandes volúmenes de agua es complicado por lo que se descarta para abastecimiento de gran capacidad
- Son sistemas ampliamente en zonas de pequeñas poblaciones como sistema de captación de agua en aljibes
- Estas aguas no se pueden usar de manera directa y para uso potable al menos requieren ser filtradas
- Los sistemas empleados son los aljibes

Aljibes

- Sistemas desarrollados por los árabes en la antigüedad
- Sistemas empleados en pequeños núcleos o autoconsumo

CAPTACIÓN DE AGUA DE LLUVIA

Aljibes de gran capacidad

Sistemas desarrollados con el fin de almacenar gran cantidad y además ser capaces de filtrar el agua recolectada Varios tipos:

Cisterna veneciana Aljibe americano

Aljibe alemán Aljibe con filtro superior

Capacidad del aljibe

- Se hace teniendo en cuenta la precipitación media del lugar (en mm) y la extensión receptora (m²).
- Para grandes demandas de agua potable sería necesario una gran capacidad de almacenaje.
- o Grandes extensiones de terreno para recoger un volumen apreciable

CAPTACIÓN DE AGUA DE RÍOS, ARROYOS Y CANALES

Generalidades

- Se realiza mediante obras de toma en el cauce o margen de la corriente del agua
- Se necesita un estudio hidrológico que incluye:
 - Pluviometría del lugar
 - Aforos de caudal circulante
 - Cálculos de escorrentías
 - Análisis de calidades e influencias aguas arriba del punto de toma
 - Nivel de arrastre por sedimentación
 - Influencia sobre el ecosistema

Toma directa

- En el caso de ríos con corrientes apreciables, se puede colocar un pozo al margen con una cota superior al máximo nivel esperado
- Es necesario colocar una reja en la entrada del pozo de extracción con el fin de evitar la entrada de sólidos de gran tamaño. Paso de luz de 4 – 10 cm.
- En el pozo de se coloca un sistema de captación de agua hasta la ETAP

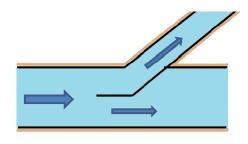
CAPTACIÓN DE AGUA DE RÍOS, ARROYOS Y CANALES

Toma sumergida

- Se trata de una toma directa donde se colocan un sistema de tuberías en el fondo de la corriente
- Los puntos de toma sumergidos tienen un filtro de malla

Filtro de malla


- Son cilíndricos
- Poseen separaciones uniformes para garantizar poca pérdida de carga y protección de la fauna



CAPTACIÓN DE AGUA DE RÍOS, ARROYOS Y CANALES

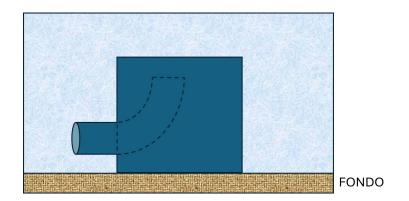
Toma con obras transversal al río sin dique

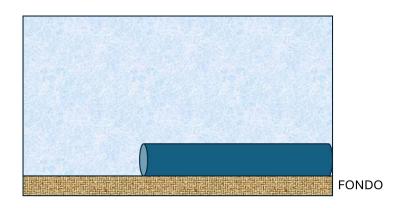
Es una toma directa que se realiza mediante la canalización de parte del río sin instalar diques en el cauce de la corriente

Toma Frontal

Toma con obras transversal al río con dique

Se construye un muro transversal a la corriente que permite la acumulación de parte de la corriente Es idóneo en sistemas donde existe grandes fluctuaciones de caudal y es necesario realizar un almacenaje Los más comunes:


CAPTACIÓN DE AGUA DE LAGOS Y EMBALSES


Generalidades

- La captación en lagos o embalses se realiza mediante torres de toma o mediante tuberías
- Se recomienda hacer la toma a profundidad y alejados de la orilla
- Si solo existe un punto de captación debe colocarse a la máxima profundidad con el fin de disponer el mayor volumen posible

Tomas directas sumergidas en el fondo

- Se emplea en puntos donde existe poco arrastre y la sedimentación sea nula
- Son tuberías sumergidas en el fondo del lago o embalse

CAPTACIÓN DE AGUA DE LAGOS Y EMBALSES

Torres de toma con plumas móviles

- Permite tomar el agua a diferentes alturas
- En lagos o embalses con alta influencia estacional permite homogenizar la calidad ya que se puede modificar el punto de toma en función de la profundidad
- Son adecuadas en puntos de baja corriente

Torres de toma

- Son cilindros o paralelepípedo huecos con varias caras, en cada una de ellas se alojan compuertas de toma
- Cada compuerta se sitúa a diferentes cotas de profundidad con sistemas de cierre
- Los sistemas más empleados son compuertas que permiten desplazarse por la cara interna o externa para dejarlo estanco
- o En muchas presas se construyen adosadas al cuerpo de la misma
- Normalmente se equipan con sistemas de rejas que se pueden autolimpiar

CAPTACIÓN DE AGUA DE MANANTIALES

Manantiales

- o Lugar por el que se produce el afloramiento del agua natural subterránea
- o Por lo general surge en zonas con estratos con grava o rocas fisuradas que permiten el paso del agua
- Se pueden clasificar en función de la forma de afloración
 - Ladera
 - Fondo
- Se puede clasificar en función del número de afloramientos
 - Difuso
 - Concreto

Arqueta para captación de manantiales

- Normalmente se acopla a la salida del manantial un sistema que permita acumular el agua y canalizarla hasta la ETAP
- En el caso de manantiales difusos se establece un sistema de drenaje canalizado hasta una arqueta que acumula todo el caudal aflorado

CAPTACIÓN DE AGUA DE POZOS

Pozos

- Los pozos se definen como un hueco cilíndrico excavado en el terreno, con diámetro y profundidad variable que al atravesar un lecho permeable permite la afluencia del agua hacia el mismo
- El diámetro de los pozos puede ser entre los 1,5-8 metros
- Profundidad del pozo variable (20 30 m)
- Los pozos se revisten de ladrillo o aros de hormigón que tiene unos orificios para el paso del agua
- Se colocan bombas sumergidas en el interior o en cámaras secas que permiten la extracción del agua
- La operación de los pozos es peligrosa debido al riesgo de desprendimiento

CAPTACIÓN DE AGUA DE GALERÍAS

Galerías filtrantes

- Las galerías es un sistema de captación que se construye para alcanzar un acuífero cuya estructura permeable está diseñada para captar el agua.
- o De construcción similar a un pozo, pero con la diferencia de que la galería es prácticamente horizontal
- Las galerías suelen terminar con la cámara de captación.
- o La excavación se sitúa por debajo del nivel del agua en la zona de saturación
- La sección debe ser suficiente para permitir el desplazamiento de los equipos y las personas
- Pendiente de la galería 3:1 o 2:1

SISTEMAS DE CAPTACIÓN DE AGUA DE MAR

Punto de la toma de agua

- o Es la decisión que más influenciará sobre el diseño de la instalación y su posterior operación y mantenimiento
- o En la mayoría de las ocasiones el punto de toma no se define por mediante criterios técnicos, sino que lo marcan criterios políticos, estratégicos o económicos.

Tomas de tipo abierto

El agua captada se toma directamente del medio marino mediante una estructura de toma, por lo que presenta unas características fisicoquímicas iguales a las del medio marino que rodea la toma

- o Características de las aguas captadas:
 - ✓ Contenido en SS importante y variable
 - ✓ Actividad orgánica y biológica importante
 - ✓ Contenido de oxígeno disuelto más elevado que el de las tomas cerradas
 - ✓ Mayor exposición a la contaminación
 - ✓ Amplia margen de variación de temperaturas
- Requieren pretratamientos complejos con costes de inversión y de explotación superiores a los de las tomas cerradas

SISTEMAS DE CAPTACIÓN DE AGUA DE MAR

Tomas de pozo

- El agua captada se toma del subsuelo mediante pozos, por lo que es sometida a un proceso de filtración natural por el terreno.
- o El agua captada presenta características fisicoquímicas que difieren de las del medio marino
- o Las características del agua son muy constantes
- No presenta fluctuaciones de temperatura
- o El filtrado por el terreno se traduce en un proceso previo de desalinización perdiendo algunos iones
- o Requieren de un elevado coste de instalación

RED DE DISTRIBUCIÓN DE AGUA POTABLE

El abastecimiento debe

- Garantizar la calidad
- o Garantizar el servicio de manera continuada y con un mínimo de presión

Red de distribución

Depósitos

Estructura apta para almacenar un volumen de agua con el equipamiento necesario para monitorizar el caudal, niveles y garantizar el control sanitario

Tuberías

Se encargan del transporte del agua desde las ETAP hasta los depósitos reguladores y consumidores finales

DEPÓSITOS. CONCEPTOS GENERALES

Objetivos

- Regular caudales
- Garantizar el servicio:
 - Averías
 - o Incendios
- Cubrir la demanda punta diaria
- Garantizar la calidad del agua:
 - Impedir el crecimiento de algas
- o En casi todos los casos se efectúa la cloración o proceso de desinfección

Clasificación

CLASIFICACIÓN SEGÚN SU POSICIÓN CON RESPECTO AL TERRENO

Según su posición con respecto al terreno

Enterrados

Semienterrados

Superficiales

Elevados

Selección

- Geometría del terreno
- Topografía

- Cotas hidráulicas que requiere la red de suministro
- Impacto medioambiental generado

CLASIFICACIÓN SEGÚN SU FUNCIÓN

Reguladores de caudal

Sirven para
 compensar en un
 tiempo
 determinado los
 caudales de
 aportación y
 consumo

Reguladores de presión

- Garantizan la presión mínima necesaria en cada punto de la red
- Deben estar a una cota que garantice el nivel de presión deseado

Seguridad

 Solo se emplean en emergencias como averías, incendios, etc.

Mixtos

- Permiten
 simultaneidad de
 varias funciones
- Son los más habituales en las redes municipales

CLASIFICACIÓN SEGÚN SU RELACIÓN CON LA RED

Cabecera

- Pasa todo el caudal de suministro antes de entrar en la red de distribución
- El nivel debe garantizar la cota para mantener la presión o sino requerirá bombeos de entrada y salida del agua

Cola, terminales o en derivación

- Son depósitos que solo abastecen a una zona
- Se suelen situar al final de la red o al final de un ramal
- Cuando se sitúan al final de la red reciben las amortiguaciones de todo el caudal

CLASIFICACIÓN SEGÚN SU PROCEDIMIENTO CONSTRUCTIVO

Construidos in situ

- Normalmente son de hormigón estructural
- Siempre que se requiera un volumen superior a los 1.000 m³ es la mejor opción

Prefabricados

- Son de acero, fundición, plástico
- Son para pequeñas demandas
- Son empleados de manera provisional en labores de mantenimiento de los depósitos in situ

CLASIFICACIÓN SEGÚN SU GEOMETRÍA

Prismáticos

- La forma más habitual en planta es la rectangular, si bien también se pueden adoptar por otras como hexágonos, octógonos
- Los rectangulares son lo más aconsejados ya que permiten su ampliación

Desarrollables

- Los depósitos son los cilíndricos y los troncocónicos
- Tienen encofrados curvos que encarecen la obra.

No desarrollables

- Son las esferas
- Se suelen usar en los depósitos elevados ya que tiene menor superficie para un mismo volumen

EMPLAZAMIENTO DEL DEPÓSITO

Criterios de selección de emplazamiento

- 1. El agua de alimentación debe llegar al depósito por gravedad o por bombeo. Se prefiere por gravedad.
- 2. El depósito deberá estar lo suficientemente elevado para asegurar en todo momento que en todos los puntos de la red de la presión sea suficiente y uniforme.
- 3. El terreno sobre el que se instala el depósito debe ser estable y se debe evitar suelos con riesgo de fisuras.
- 4. Evaluar el impacto ambiental y visual que pueda generar.
- 5. Si se opta por un depósito enterrado debe estar situado por encima del movimiento de las aguas subterráneas.
- Los depósitos deben estar a una cota superior a la red de alcantarillado para asegurar su limpieza y desinfección (RD140/2003).
- 7. Debe tenerse en cuenta los consumos actuales y futuros del agua potable.
- 8. La red debe ser lo más económica posible por tanto se debe intentar buscar el baricentro de la región y analizar la topografía para buscar el mejor equilibrio de presiones.

CAPACIDAD

Capacidad mínima

- El caudal de salida de un depósito de abastecimiento de agua potable es variable por tanto se requiere una capacidad mínima.
- Se define como la capacidad que permite almacenar agua sobrante cuando el caudal de consumo sea menor que el de abastecimiento y aportar la diferencia
- Debe ser aquel que permita:
 - Proporcionar agua ante una emergencia
 - Atender el consumo durante una avería o mantenimiento (se recomienda un 25% del consumo máximo)
- Para determinar la capacidad mínima de un depósito es preciso disponer de datos seguros acerca de la variación del caudal durante un día.
- Se aconseja una capacidad de depósito:
 - o Igual al consumo de 24 horas para poblaciones pequeñas
 - Igual al consumo de 48 horas para poblaciones grandes
- El Plan Hidrológico de Tenerife establece el consumo en L/hab·d para diferentes núcleos poblacionales y usos

n° hab.	Domést.	Ind.	Serv. Mun.	Pérd.	TOTAL
<1.000	60	5	10	25	100
1-6.000	70	30	25	25	150
6-12.000	90	50	35	25	200
12-50.000	110	70	35	25	250
50-250.000	125	100	50	25	300
>250.000	165	150	60	25	400

DISEÑO DE CONDUCCIONES

Criterios de diseño

- Como valores generales se deben tener en cuenta un caudal conducido de 170 L/hab·d
- Velocidades de transporte:
 - Arterias principales: 0,3 0,7 m/s
 - Redes pequeñas: 0,6 1,2 m/s
- Presiones de trabajo:
 - Arterias principales: 4,5 5,5 kg/cm²
 - Redes pequeñas: 3,5 4,5 kg/cm²

$A_{conducción} = \frac{Dotación \cdot N^{\circ}hab}{v}$

Materiales

Fundición dúctil

- Aleación de hierro con carbono (2 6%) y silicio (1 3%)
- Fácil montaje
- Resiste altas presiones

PVC

- Fabricado a partir de resinas de policloruro de aluminio
- Les afecta la temperatura

Polietileno

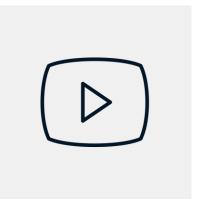
- Polimerización de etileno mediante resinas
- Montaje y reparaciones rápidas

PRINCIPALES ACCESORIOS DE LAS REDES DE DISTRIBUCIÓN

Ventosas

El objetivo de este tipo de accesorio es eliminar el aire dentro de la conducción

Filtro en Y


Capturar posibles partículas que están en la conducción

Reductoras de presión

El objetivo de este tipo de accesorio es controlar la presión de la conducción

PRINCIPALES ACCESORIOS DE LAS REDES DE DISTRIBUCIÓN

Contadores de hélice

Empleados en puntos de entrega y donde no hay suministro eléctrico

Caudalímetro

Empleados para grandes caudales y en ramales principales

