Tema 4: Medidas signadas y complejas Problemas propuestos

ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es

Índice

1	Medidas signadas y la descomposición de Hahn	1
2	La descomposición de Jordan	1
3	El teorema de Radon-Nikodým	2
4	Algunas aplicaciones del teorema de Radon-Nikodým	2

MEDIDA E INTEGRACIÓN OCW-ULL 2024

1 Medidas signadas y la descomposición de Hahn

- 1. Sea $v(E) = \int_E x e^{-x^2} dx$. ¿Cuáles son los conjuntos positivos, negativos y nulos con respecto a v? Encontrar una descomposición de Hahn de $\mathbb R$ respecto de v.
- 2. Demostrar que si en el Teorema 1.10 se supone $v(E) < \infty$, se obtiene $0 < v(A) < \infty$.
- 3. Dar un ejemplo que muestre que la descomposición de Hahn no es única.
- 4. Dada cualquier sucesión $\{a_n\}_{n=1}^{\infty}$ y cualquier conjunto $E \subset \mathbb{N}$, sea v(E) la suma, si existe, de los términos correspondientes de $\{a_n\}_{n=1}^{\infty}$. ¿Qué sucesiones se asocian con medidas signadas sobre \mathbb{N} ? Probar que si $\{a_n\}_{n=1}^{\infty}$ es una de estas sucesiones y $|a_n| > 0$ para cada $n \in \mathbb{N}$, la descomposición de Hahn de \mathbb{N} con respecto a v es única.
- 5. Sea v una medida signada y $\{E_n\}_{n=1}^{\infty}$ una sucesión de conjuntos medibles disjuntos dos a dos, tales que $|v(\bigcup_{n=1}^{\infty} E_n)| < \infty$. Demostrar que $\sum_{n=1}^{\infty} v(E_n)$ es absolutamente convergente.
- 6. Probar que si v es una medida signada y F, E conjuntos medibles tales que $F \subset E$, entonces $|v(E)| < \infty$ implica $|v(F)| < \infty$.
- 7. Demostrar que si ν es una medida signada y $E_1 \subset E_2 \subset \dots$ son medibles, entonces $\nu(\bigcup_{i=1}^{\infty} E_i) = \lim_{i \to \infty} \nu(E_i)$.
- 8. Probar que si v es una medida signada y $E_1 \supset E_2 \supset \dots$ son medibles, con $|v(E_1)| < \infty$, entonces

$$v\left(\bigcap_{i=1}^{\infty}E_{i}\right)=\lim_{i\to\infty}v\left(E_{i}\right).$$

2 La descomposición de Jordan

- 9. Demostrar que si v_1 , v_2 y μ son medidas y $v_1 \perp \mu$, $v_2 \perp \mu$, entonces $v_1 + v_2 \perp \mu$.
- 10. Sean (X, \mathscr{S}) un espacio medible y $E \in \mathscr{S}$. Si $v(E) = \int_E f d\mu$, donde $\int f d\mu$ existe, ¿quién es |v|(E)?
- 11. Probar que si la medida signada v sólo toma valores finitos, entonces

$$v^+ = \frac{1}{2}(|v| + v), \quad v^- = \frac{1}{2}(|v| - v).$$

12. Sea v una medida signada sobre el espacio medible (X, \mathcal{S}) . Verificar que

$$v^{+}(E) = \max\{v(U) : U \in \mathcal{S}, \ U \subset E\}, \quad v^{-}(E) = -\min\{v(U) : U \in \mathcal{S}, \ U \subset E\}$$
 (E \in \mathcal{S}).

En particular, v^+ y v^- son independientes de la descomposición de Hahn que se use para definirlas.

- 13. Demostrar que $|v|(E) = \sup \sum_{i=1}^{n} |v(E_i)|$, donde el supremo se toma sobre todas las familias finitas $\{E_i\}_{i=1}^n$ de conjuntos medibles disjuntos dos a dos, tales que $E = \bigcup_{i=1}^n E_i$. Este resultado justifica la denominación «variación total» en la Definición 2.6.
- 14. Probar que la descomposición de Jordan es minimal en el sentido siguiente: si v es una medida signada y $v = v_1 v_2$, donde v_1 y v_2 son medidas, entonces $|v| \le v_1 + v_2$, con igualdad si, y sólo si, $v_1 = v^+$ y $v_2 = v^-$.

MEDIDA E INTEGRACIÓN OCW-ULL 2024

2/3 I. Marrero

3 El teorema de Radon-Nikodým

15. Sean μ , ν medidas sobre la misma σ -álgebra tales que $\mu \ll \nu$. Demostrar que si una proposición P se verifica c.t.p. $[\nu]$, entonces P también se verifica c.t.p. $[\mu]$. Además, si la medida μ es completa, también lo es ν .

- 16. Dar un ejemplo que muestre que en la Definición 3.2, las condiciones $|\mu|(E) = 0$ y $\mu(E) = 0$ no son equivalentes.
- 17. Encontrar dos medidas μ y ν , sobre el mismo espacio medible, para las que no se verifiquen ninguna de las relaciones $\mu \ll \nu$, $\nu \ll \mu$, $\mu \perp \nu$.
- 18. Sea $x_0 \in (0,1)$, y para cada conjunto medible Lebesgue $E \subset [0,1]$, defínase $v(E) = \chi_E(x_0)$. Probar que v es una medida que no es absolutamente continua con respecto a la medida de Lebesgue en [0,1].
- 19. Demostrar que si μ y ν son medidas sobre la misma σ -álgebra $\mathscr S$ tales que $\nu \ll \mu$ y $\nu \perp \mu$, entonces ν es idénticamente nula.
- 20. Probar que si $v(E) = \int_E f d\mu$ para cada $E \in \mathcal{S}$, donde f es no negativa y medible, y $f = \infty$ en un conjunto de μ -medida positiva, entonces v no es σ -finita.
- 21. Demostrar que la condición de que v sea σ -finita es necesaria en el teorema de Radon-Nikodým.
- 22. Probar que la condición de que μ sea σ -finita es necesaria en el teorema de Radon-Nikodým.

4 Algunas aplicaciones del teorema de Radon-Nikodým

- 23. En el caso particular de que μ sea σ -finita, aplicar el Teorema 3.5 para demostrar el Teorema 4.1.
- 24. Sean $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ succesiones de números positivos tales que $\inf_{n\in\mathbb{N}}a_n=0$, $\inf_{n\in\mathbb{N}}b_n>0$, y sean μ , ν las medidas definidas sobre $\mathscr{P}(\mathbb{N})$ por $\mu(\{n\})=a_n$, $\nu(\{n\})=b_n$ $(n\in\mathbb{N})$. Probar que $\nu\ll\mu$, pero que no se verifica la tesis del Teorema 4.1.
- 25. Sea $\{f_n\}_{n=1}^{\infty}$ una sucesión de Cauchy en $L^1(\mu)$. Demostrar que para todo $\varepsilon > 0$, existe $\delta > 0$ tal que $\mu(E) < \delta$ implica

$$\int_{E} |f_n| d\mu < \varepsilon \quad (n \in \mathbb{N}).$$

26. Probar que si μ y ν son medidas signadas σ -finitas y $\mu \ll \nu$, $\nu \ll \mu$, se cumple que

$$\frac{d\mathbf{v}}{d\mu} = \left(\frac{d\mu}{d\mathbf{v}}\right)^{-1} \quad [|\mu|].$$

27. Sean \mathcal{M} y m, respectivamente, la σ -álgebra y la medida de Lebesgue en \mathbb{R} . Definimos

$$v(E) = \int_{E} f \, dx \quad (E \in \mathcal{M}),$$

donde $f(x) = (1+x^2)^{-1}$. Verificar que

$$\frac{dm}{dv} = 1 + x^2 \quad [v].$$

28. Dadas las funciones

$$f(x) = \begin{cases} \sqrt{1-x}, & x \le 1 \\ 0, & x > 1, \end{cases} \qquad g(x) = \begin{cases} x^2, & x \ge 0 \\ 0, & x < 0, \end{cases}$$

OCW-ULL 2024 Medida e Integración

sean v, μ las medidas definidas sobre \mathcal{M} por

$$v(E) = \int_E f \, dx, \quad \mu(E) = \int_E g \, dx \qquad (E \in \mathcal{M}).$$

Encontrar la descomposición de Lebesgue de v con respecto a μ .

- 29. Demostrar que el conjunto D que comparece en el Ejemplo 4.11 es contable.
- 30. Probar el teorema de descomposición de Lebesgue (Teorema 4.10) directamente, sin recurrir al teorema de Radon-Nikodým (Teorema 3.5), usando, como en el teorema de descomposición de Hahn (Teorema 1.11), una sucesión de conjuntos que maximice *v* para obtener el conjunto *B* que interviene en la demostración.

MEDIDA E INTEGRACIÓN OCW-ULL 2024