Problemas propuestos con solución

Aplicaciones físicas

ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es

Índice

1.	Integral doble: valor medio	1
2.	Integral doble: masa y centro de masa	1
3.	Integral doble: momentos de inercia	1
4.	Integral triple: valor medio	2
5.	Integral triple: masa y centro de masa	2
6.	Integral triple: momentos de inercia	3
7.	Integral de línea: centro de masa y momentos de inercia	4
8.	Integral de superficie: centro de masa y momentos de inercia	4

APLICACIONES FÍSICAS 1/4

1. Integral doble: valor medio

1. La temperatura de una placa es proporcional a su distancia al origen. Dicha placa se halla situada en la región $D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 25\}$. Sabiendo que en el punto (1,0) su temperatura es de 100° C, hallar la temperatura media de la placa.

Solución:
$$\frac{1000}{3}$$
 °C.

2. Integral doble: masa y centro de masa

2. Determinar la masa y el centro de masa de la lámina que ocupa la región D acotada por la parábola $x = y^2$ y la recta y = 2 - x, y con función de densidad $\rho(x, y) = 3$.

Solución:
$$M = \frac{27}{2}$$
, $(\bar{x}, \bar{y}) = \left(\frac{8}{5}, -\frac{1}{2}\right)$.

 La densidad en cualquier punto de una lámina semicircular de radio a es proporcional a la distancia desde el centro del círculo. Determinar el centro de masa de la lámina.

Solución:
$$\left(0, \frac{3a}{2\pi}\right)$$
.

4. Una lámina ocupa la parte del disco $x^2 + y^2 \le 1$ en el primer cuadrante. Determinar su centro de masa si la densidad es proporcional al cuadrado de la distancia desde el eje OX para cualquier punto.

Solución:
$$\frac{16}{15\pi}(1,2)$$
.

5. Se yuxtapone un rectángulo a un semicírculo de radio constante R, de modo que el diámetro coincida con uno de los lados del rectángulo. Se pide calcular las dimensiones a, b de éste para que el centro de masa de la figura completa coincida con el centro del semicírculo. Se supone la densidad superficial μ constante.

Solución:
$$a = R\sqrt{\frac{2}{3}}$$
, $b = 2R$.

3. Integral doble: momentos de inercia

6. Calcular el momento de inercia del recinto encerrado por la elipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, z = 0 respecto al eje *OY*. Considérese la densidad superficial μ constante.

Solución:
$$I_y = \frac{1}{4}a^3b\mu\pi$$
.

2/4 I. Marrero

7. Encontrar los momentos de inercia I_x , I_y , I_0 para la lámina D, siendo D la región del primer cuadrante acotada por la parábola $y = x^2$ y la recta y = 1, y con una densidad dada por la función $\mu(x, y) = xy$.

Solución:
$$I_x = \frac{1}{10}$$
, $I_y = \frac{1}{16}$, $I_0 = \frac{13}{80}$.

4. Integral triple: valor medio

8. Hallar el valor promedio de la función

$$f(x,y,z) = \frac{1}{\sqrt{1 + x^2 + y^2 + z^2}}$$

en el interior de la esfera $D = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}.$

Solución:
$$\frac{3}{\sqrt{2}} - \frac{3}{2} \ln \left(1 + \sqrt{2}\right)$$
.

5. Integral triple: masa y centro de masa

9. Calcular la masa del sólido acotado por el cilindro $x^2 + y^2 = 2x$ y el cono $z^2 = x^2 + y^2$ si la densidad es $\mu(x, y, z) = \sqrt{x^2 + y^2}$.

Solución: 3π .

10. Determinar la masa y el centro de masa del sólido que está bajo el plano z = x + 2y, sobre el plano z = 0, limitado por el cilindro parabólico $y = x^2$ y los planos y = 0, x = 1, y cuya función de densidad es $\mu(x, y, z) = 2$.

Solución:
$$M = \frac{9}{10}$$
, $(\bar{x}, \bar{y}, \bar{z}) = \left(\frac{22}{27}, \frac{25}{63}, \frac{152}{189}\right)$.

11. Determinar la masa y el centro de masa del cubo $0 \le x \le a$, $0 \le y \le a$, $0 \le z \le a$, si su función de densidad es $\mu(x, y, z) = x^2 + y^2 + z^2$.

Solución:
$$M = a^5$$
, $(\bar{x}, \bar{y}, \bar{z}) = \frac{7a}{12}(1, 1, 1)$.

12. Hallar el centro de masa del sólido homogéneo limitado por el cono de ecuación $z=\sqrt{x^2+y^2}$, con $0 \le z \le a$.

Solución:
$$\left(0,0,\frac{3a}{4}\right)$$
.

APLICACIONES FÍSICAS 3/4

13. Calcular el centro de masa del cuerpo homogéneo Ω limitado por el paraboloide $z=x^2+y^2$ y el plano z=1.

Solución:
$$\left(0,0,\frac{2}{3}\right)$$
.

14. Determinar el centro de masa del sólido

$$D = \left\{ (x, y, z) \in \mathbb{R}^3 : y^2 + z^2 \le \frac{1}{4}, \ (x - 1)^2 + y^2 + z^2 \le 1, \ x \le 1 \right\}.$$

Solución:
$$\left(\frac{107 - 48\sqrt{3}}{128 - 48\sqrt{3}}, 0, 0\right)$$
.

15. Determinar el centro de masa de un sólido con densidad constante que está acotado por el cilindro parabólico $x = y^2$ y los planos x = z, z = 0, x = 1.

Solución:
$$\left(\frac{5}{7},0,\frac{5}{14}\right)$$
.

6. Integral triple: momentos de inercia

16. Determinar los momentos de inercia para un cubo de densidad constante *k* y longitud de lado *l*, si uno de sus vértices está en el origen y tres de sus aristas están a lo largo de los ejes coordenados.

Solución:
$$I_x = I_y = I_z = \frac{2kl^5}{3}$$
.

- 17. Se considera el sólido V de densidad constante μ , limitado por la superficie esférica de radio R. Calcular los momentos de inercia:
 - (a) Respecto a su centro.
 - (b) Respecto a un plano que pase por su centro.
 - (c) Respecto a un diámetro.

Solución: (a)
$$\frac{4}{5}\pi\mu R^5$$
; (b) $\frac{4}{15}\pi\mu R^5$; (c) $\frac{8}{15}\pi\mu R^5$.

18. Determinar el momento de inercia de una bola no homogénea de radio *R* y masa *M* respecto a un diámetro si la densidad de cada punto es proporcional a la distancia del punto al centro de la bola.

Solución:
$$\frac{4MR^2}{9}$$
.

I. Marrero

7. Integral de línea: centro de masa y momentos de inercia

19. Hallar el centroide del arco del primer cuadrante de la circunferencia $x^2 + y^2 = 25$.

Solución:
$$\left(\frac{10}{\pi}, \frac{10}{\pi}\right)$$
.

20. Hallar el centroide de un arco circular de radio r y ángulo central 2θ .

Solución:
$$\left(\frac{r \operatorname{sen} \theta}{\theta}, 0\right)$$
.

21. Hallar el momento de inercia de la circunferencia de un círculo con respecto a un diámetro.

Solución:
$$\pi r^3$$
.

22. Hallar el momento de inercia con respecto al eje OX de la hipocicloide $x = a \sin^3 \theta$, $y = a \cos^3 \theta$.

Solución:
$$\frac{3}{2}a^3$$
.

8. Integral de superficie: centro de masa y momentos de inercia

23. Hallar el centro de masa del cono de ecuación $z = \sqrt{x^2 + y^2}$, $0 \le z \le a$, con densidad superficial constante.

Solución:
$$\left(0,0,\frac{2a}{3}\right)$$
.

24. Calcular el momento de inercia de la superficie esférica $x^2 + y^2 + z^2 = 9$ respecto de uno de sus diámetros. Supóngase densidad superficial μ constante.

Solución:
$$216\mu\pi$$
.