-
L. Abellanas, A. Galindo: Espacios de Hilbert (geometría, operadores, espectros). EUDEMA, 1988.
-
N. Akhiezer, I. Glazman: Theory of linear operators in Hilbert space, 2nd ed.. Dover, 1993.
-
B. Beauzamy: Introduction to operator theory and invariant subspaces. North-Holland, 1988.
-
M.S. Birman, M.Z. Solomjak: Spectral theory of self-adjoint operators in Hilbert space. Reidel, 1987.
-
J. Blank, P. Exner, M. Havlíček: Hilbert space operators in quantum physics, 2nd ed.. Springer, 2008.
-
J.B. Conway: A course in functional analysis, 2nd ed.. Springer, 1990.
-
J.B. Conway: A course in operator theory. American Mathematical Society, 2000.
-
J. Dieudonné. History of functional analysis. North-Holland, 1981.
-
N. Dunford, J.T. Schwartz: Linear operators I - General theory. Wiley-Interscience, 1957.
-
I. Gohberg, S. Goldberg: Basic operator theory. Birkhäuser, 2001.
- I. Gohberg, P. Lancaster, L. Rodman: Invariant subspaces of matrices with applications. Wiley, 1986.
-
S. Goldberg: Unbounded linear operators. McGraw-Hill, 1966.
-
P.R. Halmos: A Hilbert space problem book, 2nd ed.. Springer, 1982.
-
E. Hewitt, K. Stromberg: Real and abstract analysis. Springer, 1965.
-
J. McDonald, N. Weiss: A course in real analysis, 2nd ed.. Academic Press, 2012.
-
W. Mlak: Hilbert spaces and operator theory. Kluwer, 1991.
-
A. Naylor, G. Sell: Linear operator theory in engineering and science. Springer, 1982.
-
G.K. Pedersen: Analysis now. Springer, 1989.
-
M. Reed, B. Simon: Methods of modern mathematical physics I - Functional analysis. Academic Press, 1980.
-
W. Rudin: Functional analysis. McGraw-Hill, 1973.
-
W. Rudin: Real and complex analysis, 3rd ed.. McGraw-Hill, 1987.
-
M. Schechter: Principles of functional analysis. Academic Press, 1973.
-
M. Schechter: Operator methods in quantum mechanics. Elsevier, 1981.
-
A. Taylor, D.C. Lay: Introduction to functional analysis. J. Wiley and Sons, 1980.
-
J. Weidmann: Linear operators in Hilbert space. Springer, 1980.